|
7 | 7 | # Download possion_64 data from https://drive.google.com/drive/folders/1crIsTZGxZULWhrXkwGDiWF33W6RHxJkf
|
8 | 8 | # Download helmholtz_64 data from https://drive.google.com/drive/folders/1UjIaF6FsjmN_xlGGSUX-1K2V3EF2Zalw
|
9 | 9 |
|
10 |
| - # Update the file paths in `config/operators_possion.yaml` or `config/operators_helmholtz.yaml` to specify `train_path`, `val_path`, `test_path`, `scales_path`, and `train_rand_idx_path`. |
11 |
| - |
12 |
| - # possion_64 pretrain |
13 |
| - python pretrain_basic.py --run_name r0 --config pois-64-pretrain-e1_20_m3 --yaml_config ./config/operators_poisson.yaml |
14 |
| - |
15 |
| - # possion_64 finetune |
16 |
| - python pretrain_basic.py --run_name r0 --config pois-64-e5_15_b0 --yaml_config ./config/operators_poisson.yaml |
17 |
| - |
18 |
| - # helmholtz_64 pretrain |
19 |
| - python pretrain_basic.py --run_name r0 --config helm-64-pretrain-o1_20_m1 --yaml_config ./config/operators_helmholtz.yaml |
20 |
| - |
21 |
| - # helmholtz_64 finetune |
22 |
| - python pretrain_basic.py --run_name r0 --config helm-64-o5_15_ft5_r2 --yaml_config ./config/operators_helmholtz.yaml |
| 10 | + # Update the file paths in `cexamples/data_efficient_nopt/config/data_efficient_nopt.yaml`, specify to mode in `train` |
| 11 | + # UPdate the file paths in config/operators_poisson.yaml or config/operators_helmholtz.yaml, specify to `train_path`, `val_path`, `test_path`, `scales_path` and `train_rand_idx_path` |
| 12 | + |
| 13 | + # possion_64 pretrain, specify as following: |
| 14 | + # run_name: r0 |
| 15 | + # config: pois-64-pretrain-e1_20_m3 |
| 16 | + # yaml_config: config/operators_poisson.yaml |
| 17 | + python data_efficient_nopt.py |
| 18 | + |
| 19 | + # helmholtz_64 pretrain, specify as following: |
| 20 | + # run_name: r0 |
| 21 | + # config: helm-64-pretrain-o1_20_m1 |
| 22 | + # yaml_config: config/operators_helmholtz.yaml |
| 23 | + python data_efficient_nopt.py |
23 | 24 | ```
|
24 | 25 |
|
25 | 26 | === "模型评估命令"
|
|
34 | 35 |
|
35 | 36 | ``` sh
|
36 | 37 | cd examples/data_efficient_nopt
|
37 |
| - # Update the file paths in `config/operators_possion.yaml` or `config/operators_helmholtz.yaml` to specify `train_path`, `test_path`, and `scales_path`. |
| 38 | + # Update the file paths in `cexamples/data_efficient_nopt/config/data_efficient_nopt.yaml`, specify to mode in `infer` |
38 | 39 | # Use a fine-tuned model as the checkpoint in 'exp' or utilize `model_convert.py` to convert the official checkpoint.
|
39 |
| - python3 inference_fno_helmholtz_poisson.py --config ./config/inference_poisson.yaml --ckpt_path <ckpt_path> --num_demos 1 |
| 40 | + # UPdate the file paths in config/inference_poisson.yaml or config/inference_poisson.yaml, specify to `train_path`, `test_path` and `scales_path` |
| 41 | + |
| 42 | + # possion_64 inference, specify as following: |
| 43 | + # evaluation: config/inference_poisson.yaml |
| 44 | + # ckpt_path: <ckpt_path> |
| 45 | + python data_efficient_nopt.py |
40 | 46 | ```
|
41 | 47 |
|
42 | 48 | ## 1. 背景简介
|
|
0 commit comments