Skip to content

Commit 3851b68

Browse files
authored
Merge pull request #215 from PaddlePaddle/jason
Jason
2 parents 4c9e2a6 + ceb1fdf commit 3851b68

30 files changed

+241
-50
lines changed

docs/apis/datasets.md

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -7,7 +7,7 @@ paddlex.datasets.ImageNet(data_dir, file_list, label_list, transforms=None, num_
77
```
88
读取ImageNet格式的分类数据集,并对样本进行相应的处理。ImageNet数据集格式的介绍可查看文档:[数据集格式说明](../data/format/index.html)
99

10-
示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/classification/mobilenetv2.py#L25)
10+
示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv2.py)
1111

1212
> **参数**
1313
@@ -20,15 +20,15 @@ paddlex.datasets.ImageNet(data_dir, file_list, label_list, transforms=None, num_
2020
> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。
2121
> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。
2222
23-
## paddlex.datasets.PascalVOC
23+
## paddlex.datasets.VOCDetection
2424
> **用于目标检测模型**
2525
```
26-
paddlex.datasets.PascalVOC(data_dir, file_list, label_list, transforms=None, num_workers=‘auto’, buffer_size=100, parallel_method='thread', shuffle=False)
26+
paddlex.datasets.VOCDetection(data_dir, file_list, label_list, transforms=None, num_workers=‘auto’, buffer_size=100, parallel_method='thread', shuffle=False)
2727
```
2828

2929
> 读取PascalVOC格式的检测数据集,并对样本进行相应的处理。PascalVOC数据集格式的介绍可查看文档:[数据集格式说明](../data/format/index.html)
3030
31-
> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/detection/yolov3_darknet53.py#L29)
31+
> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_darknet53.py)
3232
3333
> **参数**
3434
@@ -41,15 +41,15 @@ paddlex.datasets.PascalVOC(data_dir, file_list, label_list, transforms=None, num
4141
> > * **parallel_method** (str): 数据集中样本在预处理过程中并行处理的方式,支持'thread'线程和'process'进程两种方式。默认为'process'(Windows和Mac下会强制使用thread,该参数无效)。
4242
> > * **shuffle** (bool): 是否需要对数据集中样本打乱顺序。默认为False。
4343
44-
## paddlex.datasets.MSCOCO
44+
## paddlex.datasets.CocoDetection
4545
> **用于实例分割/目标检测模型**
4646
```
47-
paddlex.datasets.MSCOCO(data_dir, ann_file, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
47+
paddlex.datasets.CocoDetection(data_dir, ann_file, transforms=None, num_workers='auto', buffer_size=100, parallel_method='thread', shuffle=False)
4848
```
4949

5050
> 读取MSCOCO格式的检测数据集,并对样本进行相应的处理,该格式的数据集同样可以应用到实例分割模型的训练中。MSCOCO数据集格式的介绍可查看文档:[数据集格式说明](../data/format/index.html)
5151
52-
> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/detection/mask_rcnn_r50_fpn.py#L27)
52+
> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py)
5353
5454
> **参数**
5555
@@ -69,7 +69,7 @@ paddlex.datasets.SegDataset(data_dir, file_list, label_list, transforms=None, nu
6969

7070
> 读取语义分割任务数据集,并对样本进行相应的处理。语义分割任务数据集格式的介绍可查看文档:[数据集格式说明](../data/format/index.html)
7171
72-
> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/segmentation/unet.py#L27)
72+
> 示例:[代码文件](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/unet.py)
7373
7474
> **参数**
7575

docs/apis/transforms/cls_transforms.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -122,6 +122,7 @@ paddlex.cls.transforms.RandomDistort(brightness_range=0.9, brightness_prob=0.5,
122122
* **hue_range** (int): 色调因子的范围。默认为18。
123123
* **hue_prob** (float): 随机调整色调的概率。默认为0.5。
124124

125+
<!--
125126
## ComposedClsTransforms
126127
```python
127128
paddlex.cls.transforms.ComposedClsTransforms(mode, crop_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
@@ -183,3 +184,4 @@ eval_transforms = transforms.Composed([
183184
transforms.Normalize()
184185
])
185186
```
187+
-->

docs/apis/transforms/det_transforms.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -168,6 +168,7 @@ paddlex.det.transforms.RandomCrop(aspect_ratio=[.5, 2.], thresholds=[.0, .1, .3,
168168
* **allow_no_crop** (bool): 是否允许未进行裁剪。默认值为True。
169169
* **cover_all_box** (bool): 是否要求所有的真实标注框都必须在裁剪区域内。默认值为False。
170170

171+
<!--
171172
## ComposedRCNNTransforms
172173
```python
173174
paddlex.det.transforms.ComposedRCNNTransforms(mode, min_max_size=[224, 224], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
@@ -302,3 +303,4 @@ eval_transforms = transforms.Composed([
302303
transforms.Normalize()
303304
])
304305
```
306+
-->

docs/apis/transforms/seg_transforms.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -167,6 +167,7 @@ paddlex.seg.transforms.RandomDistort(brightness_range=0.5, brightness_prob=0.5,
167167
* **hue_range** (int): 色调因子的范围。默认为18。
168168
* **hue_prob** (float): 随机调整色调的概率。默认为0.5。
169169

170+
<!--
170171
## ComposedSegTransforms
171172
```python
172173
paddlex.det.transforms.ComposedSegTransforms(mode, min_max_size=[400, 600], train_crop_shape=[769, 769], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], random_horizontal_flip=True)
@@ -228,3 +229,4 @@ eval_transforms = transforms.Composed([
228229
transforms.Normalize()
229230
])
230231
```
232+
-->

docs/quick_start.md

Lines changed: 9 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,8 @@
11
# 10分钟快速上手使用
22

3-
本文档在一个小数据集上展示了如何通过PaddleX进行训练,您可以阅读PaddleX的**使用教程**来了解更多模型任务的训练使用方式。本示例同步在AIStudio上,可直接[在线体验模型训练](https://aistudio.baidu.com/aistudio/projectdetail/439860)
3+
本文档在一个小数据集上展示了如何通过PaddleX进行训练。本示例同步在AIStudio上,可直接[在线体验模型训练](https://aistudio.baidu.com/aistudio/projectdetail/450220)
4+
5+
本示例代码源于Github [tutorials/train/classification/mobilenetv3_small_ssld.py](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv3_small_ssld.py),用户可自行下载至本地运行。
46

57
PaddleX中的所有模型训练跟随以下3个步骤,即可快速完成训练代码开发!
68

@@ -35,7 +37,7 @@ tar xzvf vegetables_cls.tar.gz
3537
<a name="定义训练验证图像处理流程transforms"></a>
3638
**3. 定义训练/验证图像处理流程transforms**
3739

38-
由于训练时数据增强操作的加入,因此模型在训练和验证过程中,数据处理流程需要分别进行定义。如下所示,代码在`train_transforms`中加入了[RandomCrop](apis/transforms/cls_transforms.html#RandomCrop)[RandomHorizontalFlip](apis/transforms/cls_transforms.html#RandomHorizontalFlip)两种数据增强方式, 更多方法可以参考[数据增强文档](apis/transforms/augment.md)
40+
由于训练时数据增强操作的加入,因此模型在训练和验证过程中,数据处理流程需要分别进行定义。如下所示,代码在`train_transforms`中加入了[RandomCrop](apis/transforms/cls_transforms.html#randomcrop)[RandomHorizontalFlip](apis/transforms/cls_transforms.html#randomhorizontalflip)两种数据增强方式, 更多方法可以参考[数据增强文档](apis/transforms/augment.md)
3941
```
4042
from paddlex.cls import transforms
4143
train_transforms = transforms.Compose([
@@ -54,7 +56,7 @@ eval_transforms = transforms.Compose([
5456
**4. 定义`dataset`加载图像分类数据集**
5557

5658
定义数据集,`pdx.datasets.ImageNet`表示读取ImageNet格式的分类数据集
57-
- [paddlex.datasets.ImageNet接口说明](apis/datasets/classification.md)
59+
- [paddlex.datasets.ImageNet接口说明](apis/datasets.md)
5860
- [ImageNet数据格式说明](data/format/classification.md)
5961

6062
```
@@ -118,7 +120,7 @@ Predict Result: Predict Result: [{'score': 0.9999393, 'category': 'bocai', 'cate
118120

119121
<a name="更多使用教程"></a>
120122
**更多使用教程**
121-
- 1.[目标检测模型训练](tutorials/train/detection.md)
122-
- 2.[语义分割模型训练](tutorials/train/segmentation.md)
123-
- 3.[实例分割模型训练](tutorials/train/instance_segmentation.md)
124-
- 4.[模型太大,想要更小的模型,试试模型裁剪吧!](tutorials/compress/classification.md)
123+
- 1.[目标检测模型训练](train/object_detection.md)
124+
- 2.[语义分割模型训练](train/semantic_segmentation.md)
125+
- 3.[实例分割模型训练](train/instance_segmentation.md)
126+
- 4.[模型太大,想要更小的模型,试试模型裁剪吧!](https://github.com/PaddlePaddle/PaddleX/tree/develop/tutorials/compress)

docs/train/classification.md

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -10,10 +10,10 @@ PaddleX共提供了20+的图像分类模型,可满足开发者不同场景的
1010

1111
| 模型(点击获取代码) | Top1精度 | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
1212
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
13-
| [MobileNetV3_small_ssld](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/mobilenetv3_small_ssld.py) | 71.3% | 21.0MB | 6.809ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
14-
| [MobileNetV2](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/mobilenetv2.py) | 72.2% | 14.0MB | 4.546ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
15-
| [ShuffleNetV2](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/shufflenetv2.py) | 68.8% | 9.0MB | 6.101ms | - | 模型体积小,预测速度快,适用于低性能或移动端设备 |
16-
| [ResNet50_vd_ssld](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/image_classification/resnet50_vd_ssld.py) | 82.4% | 102.8MB | 9.058ms | - | 模型精度高,适用于服务端部署 |
13+
| [MobileNetV3_small_ssld](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv3_small_ssld.py) | 71.3% | 21.0MB | 6.809ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
14+
| [MobileNetV2](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/mobilenetv2.py) | 72.2% | 14.0MB | 4.546ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
15+
| [ShuffleNetV2](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/shufflenetv2.py) | 68.8% | 9.0MB | 6.101ms | - | 模型体积小,预测速度快,适用于低性能或移动端设备 |
16+
| [ResNet50_vd_ssld](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/image_classification/resnet50_vd_ssld.py) | 82.4% | 102.8MB | 9.058ms | - | 模型精度高,适用于服务端部署 |
1717

1818

1919
## 开始训练

docs/train/instance_segmentation.md

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -10,9 +10,9 @@ PaddleX目前提供了MaskRCNN实例分割模型结构,多种backbone模型,
1010

1111
| 模型(点击获取代码) | Box MMAP/Seg MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
1212
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
13-
| [MaskRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py) | 36.5%/32.2% | 170.0MB | 160.185ms | - | 模型精度高,适用于服务端部署 |
14-
| [MaskRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py) | -/- | 120.0MB | - | - | 模型精度高,适用于服务端部署 |
15-
| [MaskRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py) | -/- | 116.MB | - | - | 模型精度高,预测速度快,适用于服务端部署 |
13+
| [MaskRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r50_fpn.py) | 36.5%/32.2% | 170.0MB | 160.185ms | - | 模型精度高,适用于服务端部署 |
14+
| [MaskRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_r18_fpn.py) | -/- | 120.0MB | - | - | 模型精度高,适用于服务端部署 |
15+
| [MaskRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/instance_segmentation/mask_rcnn_hrnet_fpn.py) | -/- | 116.MB | - | - | 模型精度高,预测速度快,适用于服务端部署 |
1616

1717

1818
## 开始训练

docs/train/object_detection.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -10,12 +10,12 @@ PaddleX目前提供了FasterRCNN和YOLOv3两种检测结构,多种backbone模型
1010

1111
| 模型(点击获取代码) | Box MMAP | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
1212
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
13-
| [YOLOv3-MobileNetV1](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_mobilenetv1.py) | 29.3% | 99.2MB | 15.442ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
14-
| [YOLOv3-MobileNetV3](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_mobilenetv3.py) | 31.6% | 100.7MB | 143.322ms | - | 模型小,移动端上预测速度有优势 |
15-
| [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/yolov3_darknet53.py) | 38.9 | 249.2MB | 42.672ms | - | 模型较大,预测速度快,适用于服务端 |
16-
| [FasterRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_r50_fpn.py) | 37.2% | 136.0MB | 197.715ms | - | 模型精度高,适用于服务端部署 |
17-
| [FasterRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_r18_fpn.py) | - | - | - | - | 模型精度高,适用于服务端部署 |
18-
| [FasterRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py) | 36.0% | 115.MB | 81.592ms | - | 模型精度高,预测速度快,适用于服务端部署 |
13+
| [YOLOv3-MobileNetV1](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv1.py) | 29.3% | 99.2MB | 15.442ms | - | 模型小,预测速度快,适用于低性能或移动端设备 |
14+
| [YOLOv3-MobileNetV3](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_mobilenetv3.py) | 31.6% | 100.7MB | 143.322ms | - | 模型小,移动端上预测速度有优势 |
15+
| [YOLOv3-DarkNet53](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/yolov3_darknet53.py) | 38.9 | 249.2MB | 42.672ms | - | 模型较大,预测速度快,适用于服务端 |
16+
| [FasterRCNN-ResNet50-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r50_fpn.py) | 37.2% | 136.0MB | 197.715ms | - | 模型精度高,适用于服务端部署 |
17+
| [FasterRCNN-ResNet18-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_r18_fpn.py) | - | - | - | - | 模型精度高,适用于服务端部署 |
18+
| [FasterRCNN-HRNet-FPN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/object_detection/faster_rcnn_hrnet_fpn.py) | 36.0% | 115.MB | 81.592ms | - | 模型精度高,预测速度快,适用于服务端部署 |
1919

2020

2121
## 开始训练

docs/train/semantic_segmentation.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -10,12 +10,12 @@ PaddleX目前提供了DeepLabv3p、UNet、HRNet和FastSCNN四种语义分割结
1010

1111
| 模型(点击获取代码) | mIOU | 模型大小 | GPU预测速度 | Arm预测速度 | 备注 |
1212
| :---------------- | :------- | :------- | :--------- | :--------- | :----- |
13-
| [DeepLabv3p-MobileNetV2-x0.25](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2_x0.25.py) | - | 2.9MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
14-
| [DeepLabv3p-MobileNetV2-x1.0](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py) | 69.8% | 11MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
15-
| [DeepLabv3p-Xception65](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/deeplabv3p_xception65.pyy) | 79.3% | 158MB | - | - | 模型大,精度高,适用于服务端 |
16-
| [UNet](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/unet.py) | - | 52MB | - | - | 模型较大,精度高,适用于服务端 |
17-
| [HRNet](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/hrnet.py) | 79.4% | 37MB | - | - | 模型较小,模型精度高,适用于服务端部署 |
18-
| [FastSCNN](https://github.com/PaddlePaddle/PaddleX/blob/doc/tutorials/train/semantic_segmentation/fast_scnn.py) | - | 4.5MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
13+
| [DeepLabv3p-MobileNetV2-x0.25](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2_x0.25.py) | - | 2.9MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
14+
| [DeepLabv3p-MobileNetV2-x1.0](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_mobilenetv2.py) | 69.8% | 11MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
15+
| [DeepLabv3p-Xception65](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/deeplabv3p_xception65.pyy) | 79.3% | 158MB | - | - | 模型大,精度高,适用于服务端 |
16+
| [UNet](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/unet.py) | - | 52MB | - | - | 模型较大,精度高,适用于服务端 |
17+
| [HRNet](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/hrnet.py) | 79.4% | 37MB | - | - | 模型较小,模型精度高,适用于服务端部署 |
18+
| [FastSCNN](https://github.com/PaddlePaddle/PaddleX/blob/develop/tutorials/train/semantic_segmentation/fast_scnn.py) | - | 4.5MB | - | - | 模型小,预测速度快,适用于低性能或移动端设备 |
1919

2020

2121
## 开始训练

paddlex/__init__.py

Lines changed: 4 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,7 @@
1313
# limitations under the License.
1414

1515
from __future__ import absolute_import
16+
1617
import os
1718
if 'FLAGS_eager_delete_tensor_gb' not in os.environ:
1819
os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
@@ -21,6 +22,7 @@
2122
if "CUDA_VISIBLE_DEVICES" in os.environ:
2223
if os.environ["CUDA_VISIBLE_DEVICES"].count("-1") > 0:
2324
os.environ["CUDA_VISIBLE_DEVICES"] = ""
25+
2426
from .utils.utils import get_environ_info
2527
from . import cv
2628
from . import det
@@ -38,7 +40,7 @@
3840
"[WARNING] pycocotools is not installed, detection model is not available now."
3941
)
4042
print(
41-
"[WARNING] pycocotools install: https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/install.md"
43+
"[WARNING] pycocotools install: https://paddlex.readthedocs.io/zh_CN/develop/install.html#pycocotools"
4244
)
4345

4446
import paddlehub as hub
@@ -54,4 +56,4 @@
5456

5557
from . import interpret
5658

57-
__version__ = '1.0.7'
59+
__version__ = '1.0.8'

0 commit comments

Comments
 (0)