Skip to content

Commit 9a6189f

Browse files
authored
Revise and enhance the face recognition documentation (#2500) (#2570)
* Revise and enhance the face recognition documentation (#2500) * support modifying ArcMargin params
1 parent 9b00c61 commit 9a6189f

File tree

10 files changed

+782
-907
lines changed

10 files changed

+782
-907
lines changed

docs/module_usage/tutorials/cv_modules/face_detection.en.md

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -25,38 +25,38 @@ Face detection is a fundamental task in object detection, aiming to automaticall
2525
<tr>
2626
<td style="text-align: center;">BlazeFace</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/BlazeFace_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/BlazeFace_pretrained.pdparams">Trained Model</a></td>
2727
<td style="text-align: center;">77.7/73.4/49.5</td>
28-
<td style="text-align: center;"></td>
29-
<td style="text-align: center;"></td>
28+
<td style="text-align: center;">49.9</td>
29+
<td style="text-align: center;">68.2</td>
3030
<td style="text-align: center;">0.447</td>
3131
<td style="text-align: center;">A lightweight and efficient face detection model</td>
3232
</tr>
3333
<tr>
3434
<td style="text-align: center;">BlazeFace-FPN-SSH</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/BlazeFace-FPN-SSH_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/BlazeFace-FPN-SSH_pretrained.pdparams">Trained Model</a></td>
3535
<td style="text-align: center;">83.2/80.5/60.5</td>
36-
<td style="text-align: center;"></td>
37-
<td style="text-align: center;"></td>
36+
<td style="text-align: center;">52.4</td>
37+
<td style="text-align: center;">73.2</td>
3838
<td style="text-align: center;">0.606</td>
3939
<td style="text-align: center;">An improved model of BlazeFace, incorporating FPN and SSH structures</td>
4040
</tr>
4141
<tr>
4242
<td style="text-align: center;">PicoDet_LCNet_x2_5_face</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PicoDet_LCNet_x2_5_face_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PicoDet_LCNet_x2_5_face_pretrained.pdparams">Trained Model</a></td>
4343
<td style="text-align: center;">93.7/90.7/68.1</td>
44-
<td style="text-align: center;"></td>
45-
<td style="text-align: center;"></td>
44+
<td style="text-align: center;">33.7</td>
45+
<td style="text-align: center;">185.1</td>
4646
<td style="text-align: center;">28.9</td>
4747
<td style="text-align: center;">Face Detection model based on PicoDet_LCNet_x2_5</td>
4848
</tr>
4949
<tr>
5050
<td style="text-align: center;">PP-YOLOE_plus-S_face</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PP-YOLOE_plus-S_face_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-YOLOE_plus-S_face_pretrained.pdparams">Trained Model</a></td>
5151
<td style="text-align: center;">93.9/91.8/79.8</td>
52-
<td style="text-align: center;"></td>
53-
<td style="text-align: center;"></td>
52+
<td style="text-align: center;">25.8</td>
53+
<td style="text-align: center;">159.9</td>
5454
<td style="text-align: center;">26.5</td>
5555
<td style="text-align: center;">Face Detection model based on PP-YOLOE_plus-S</td>
5656
</tr>
5757
</tbody>
5858
</table>
59-
<b>Note: The above accuracy metrics are evaluated on the WIDER-FACE validation set with an input size of 640*640. GPU inference time is based on an NVIDIA Tesla T4 machine with FP32 precision. CPU inference speed is based on an Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz with 8 threads and FP32 precision.</b>
59+
<b>Note: The above accuracy metrics are evaluated on the WIDER-FACE validation set with an input size of 640*640. GPU inference time is based on an NVIDIA V100 machine with FP32 precision. CPU inference speed is based on an Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz and FP32 precision.</b>
6060
</details>
6161

6262
## III. Quick Integration <a id="quick"> </a>

docs/module_usage/tutorials/cv_modules/face_detection.md

Lines changed: 11 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -15,7 +15,7 @@ comments: true
1515
<th>模型</th><th>模型下载链接</th>
1616
<th style="text-align: center;">AP (%)<br/>Easy/Medium/Hard</th>
1717
<th>GPU推理耗时 (ms)</th>
18-
<th>CPU推理耗时</th>
18+
<th>CPU推理耗时 (ms)</th>
1919
<th>模型存储大小 (M)</th>
2020
<th>介绍</th>
2121
</tr>
@@ -24,38 +24,39 @@ comments: true
2424
<tr>
2525
<td>BlazeFace</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/BlazeFace_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/BlazeFace_pretrained.pdparams">训练模型</a></td>
2626
<td style="text-align: center;">77.7/73.4/49.5</td>
27-
<td></td>
28-
<td></td>
27+
<td>49.9</td>
28+
<td>68.2</td>
2929
<td>0.447</td>
3030
<td>轻量高效的人脸检测模型</td>
3131
</tr>
3232
<tr>
3333
<td>BlazeFace-FPN-SSH</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/BlazeFace-FPN-SSH_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/BlazeFace-FPN-SSH_pretrained.pdparams">训练模型</a></td>
3434
<td style="text-align: center;">83.2/80.5/60.5</td>
35-
<td></td>
36-
<td></td>
35+
<td>52.4</td>
36+
<td>73.2</td>
3737
<td>0.606</td>
3838
<td>BlazeFace的改进模型,增加FPN和SSH结构</td>
3939
</tr>
4040
<tr>
4141
<td>PicoDet_LCNet_x2_5_face</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PicoDet_LCNet_x2_5_face_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PicoDet_LCNet_x2_5_face_pretrained.pdparams">训练模型</a></td>
4242
<td style="text-align: center;">93.7/90.7/68.1</td>
43-
<td></td>
44-
<td></td>
43+
<td>33.7</td>
44+
<td>185.1</td>
4545
<td>28.9</td>
4646
<td>基于PicoDet_LCNet_x2_5的人脸检测模型</td>
4747
</tr>
4848
<tr>
4949
<td>PP-YOLOE_plus-S_face</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/PP-YOLOE_plus-S_face_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/PP-YOLOE_plus-S_face_pretrained.pdparams">训练模型</a></td>
5050
<td style="text-align: center;">93.9/91.8/79.8</td>
51-
<td></td>
52-
<td></td>
51+
<td>25.8</td>
52+
<td>159.9</td>
5353
<td>26.5</td>
5454
<td>基于PP-YOLOE_plus-S的人脸检测模型</td>
5555
</tr>
5656
</tbody>
5757
</table>
58-
注:以上精度指标是在WIDER-FACE验证集上,以640*640作为输入尺寸评估得到的。所有模型 GPU 推理耗时基于 NVIDIA Tesla T4 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz,线程数为8,精度类型为 FP32。
58+
<p>注:以上精度指标是在WIDER-FACE验证集上,以640
59+
*640作为输入尺寸评估得到的。所有模型 GPU 推理耗时基于 NVIDIA V100 机器,精度类型为 FP32, CPU 推理速度基于 Intel(R) Xeon(R) Gold 6271C CPU @ 2.60GHz,精度类型为 FP32。</p>
5960

6061
</details>
6162

docs/module_usage/tutorials/cv_modules/face_feature.en.md

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ Face feature models typically take standardized face images processed through de
1818
<th>Output Feature Dimension</th>
1919
<th>Acc (%)<br/>AgeDB-30/CFP-FP/LFW</th>
2020
<th>GPU Inference Time (ms)</th>
21-
<th>CPU Inference Time</th>
21+
<th>CPU Inference Time (ms)</th>
2222
<th>Model Size (M)</th>
2323
<th>Description</th>
2424
</tr>
@@ -28,17 +28,17 @@ Face feature models typically take standardized face images processed through de
2828
<td>MobileFaceNet</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/MobileFaceNet_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/MobileFaceNet_pretrained.pdparams">Trained Model</a></td>
2929
<td>128</td>
3030
<td>96.28/96.71/99.58</td>
31-
<td></td>
32-
<td></td>
31+
<td>5.7</td>
32+
<td>101.6</td>
3333
<td>4.1</td>
3434
<td>Face feature model trained on MobileFaceNet with MS1Mv3 dataset</td>
3535
</tr>
3636
<tr>
3737
<td>ResNet50_face</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/ResNet50_face_infer.tar">Inference Model</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ResNet50_face_pretrained.pdparams">Trained Model</a></td>
3838
<td>512</td>
3939
<td>98.12/98.56/99.77</td>
40-
<td></td>
41-
<td></td>
40+
<td>8.7</td>
41+
<td>200.7</td>
4242
<td>87.2</td>
4343
<td>Face feature model trained on ResNet50 with MS1Mv3 dataset</td>
4444
</tr>

docs/module_usage/tutorials/cv_modules/face_feature.md

Lines changed: 6 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -16,9 +16,9 @@ comments: true
1616
<tr>
1717
<th>模型</th><th>模型下载链接</th>
1818
<th>输出特征维度</th>
19-
<th>AP (%)<br/>AgeDB-30/CFP-FP/LFW</th>
19+
<th>Acc (%)<br/>AgeDB-30/CFP-FP/LFW</th>
2020
<th>GPU推理耗时 (ms)</th>
21-
<th>CPU推理耗时</th>
21+
<th>CPU推理耗时 (ms)</th>
2222
<th>模型存储大小 (M)</th>
2323
<th>介绍</th>
2424
</tr>
@@ -28,17 +28,17 @@ comments: true
2828
<td>MobileFaceNet</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/MobileFaceNet_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/MobileFaceNet_pretrained.pdparams">训练模型</a></td>
2929
<td>128</td>
3030
<td>96.28/96.71/99.58</td>
31-
<td></td>
32-
<td></td>
31+
<td>5.7</td>
32+
<td>101.6</td>
3333
<td>4.1</td>
3434
<td>基于MobileFaceNet在MS1Mv3数据集上训练的人脸特征提取模型</td>
3535
</tr>
3636
<tr>
3737
<td>ResNet50_face</td><td><a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0b2/ResNet50_face_infer.tar">推理模型</a>/<a href="https://paddle-model-ecology.bj.bcebos.com/paddlex/official_pretrained_model/ResNet50_face_pretrained.pdparams">训练模型</a></td>
3838
<td>512</td>
3939
<td>98.12/98.56/99.77</td>
40-
<td></td>
41-
<td></td>
40+
<td>8.7</td>
41+
<td>200.7</td>
4242
<td>87.2</td>
4343
<td>基于ResNet50在MS1Mv3数据集上训练的人脸特征提取模型</td>
4444
</tr>

0 commit comments

Comments
 (0)