PaddleX/latest/pipeline_deploy/high_performance_inference #2698
Replies: 13 comments 25 replies
-
有没有NPU的高性能支持,比如昇腾910b的,目前测试并发高的情况下,响应速度急剧下降,目前看是多进程对NPU资源的竞争性使用导致的。 |
Beta Was this translation helpful? Give feedback.
-
请问为什么pipeline中指定yaml文件的时候会报如下错误? Traceback (most recent call last):
File "D:\TestProject\pythonProject3\PaddleX\test.py", line 3, in <module>
pipeline = create_pipeline(
^^^^^^^^^^^^^^^^
File "D:\TestProject\pythonProject3\PaddleX\paddlex\inference\pipelines\__init__.py", line 119, in create_pipeline
return create_pipeline_from_config(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\TestProject\pythonProject3\PaddleX\paddlex\inference\pipelines\__init__.py", line 70, in create_pipeline_from_config
pipeline_name = config["Global"]["pipeline_name"]
~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^
KeyError: 'pipeline_name' |
Beta Was this translation helpful? Give feedback.
-
搞得太复杂了,产品经理脑子有坑吗,这都啥呀 原来的套件都不维护了,搞这种大一统的东西,搞得不伦不类。我就想在windows项目中集成使用dll,好家伙,要搞docker了现在,搞成客户端和服务端通信模式了,佩服 我几百台电脑部署都给人家客户先装个docker吗? |
Beta Was this translation helpful? Give feedback.
-
高性能推理插件支持在windows11系统上安装使用吗? |
Beta Was this translation helpful? Give feedback.
-
您好,想了解一下后续有类似FastDeploy 之类的方案更进吗,因为我用再工业领域,部署的时候真的希望开箱即用,类似的这样的部署非常不便,而且对于硬件很极限,常部署在intel核显上。连4060都舍不得上。 |
Beta Was this translation helpful? Give feedback.
-
高性能能推理支持的模型列表在哪里? |
Beta Was this translation helpful? Give feedback.
-
目前 PaddleX 官方仅提供 CUDA 11.8 + cuDNN 8.9 的预编译包。CUDA 12 已经在支持中。 预计什么时候发布? |
Beta Was this translation helpful? Give feedback.
-
使用高性能推理出现下面ERROR,推理结果能正常输出,paddlex3.1+paddlepaddle3.0.0 |
Beta Was this translation helpful? Give feedback.
-
你好,我只是想把paddleOCR 部署到上位机软件里,用来做零件上文字识别,产品生产周期很短,,我们需要在极短的时间内完成OCR模型的本地推理,考虑使用PaddleOCRV5, 转成ONNX模型,最后再转成tensorRT模型, 使用tensorRT对OCR模型推理加速,不使用docker和服务的形式, 只是转tensorRT后封装一个调用tensorRT OCR模型的库(python语言开发),以上本地使用python调用tensorRT ocr模型能做到吗,这个PaddleOCR V5 是不是可以转tensorRT(在不依赖你们的高性能推理部署框架的情况下)? |
Beta Was this translation helpful? Give feedback.
-
高性能推理+高稳定性服务化推理 可以结合起来部署吗? 用哪个容器镜像? |
Beta Was this translation helpful? Give feedback.
-
我很好奇,连最简单的通用图像分类网络,都无法加载高性能插件,我都怀疑是不是我的配置有问题,还是这个高性能插件就只支持个 例的模型,我测试几个产线,都是报The Paddle Inference backend is selected with the default configuration. This may not provide optimal performance |
Beta Was this translation helpful? Give feedback.
-
自从出了这个3.0之后的什么管线功能,我就不再用paddlepaddle了 ------------------ Original ------------------From: 牛马 ***@***.***>Date: Thu,Aug 21,2025 6:21 PMTo: PaddlePaddle/PaddleX ***@***.***>Cc: Bin Qian ***@***.***>, Comment ***@***.***>Subject: Re: [PaddlePaddle/PaddleX]PaddleX/latest/pipeline_deploy/high_performance_inference (Discussion #2698)
我很好奇,连最简单的通用图像分类网络,都无法加载高性能插件,我都怀疑是不是我的配置有问题,还是这个高性能插件就只支持个 例的模型,我测试几个产线,都是报The Paddle Inference backend is selected with the default configuration. This may not provide optimal performance
通用图像分类产线加载日志如下:
λ 335394c1debc /home paddlex --serve --pipeline image_classification --device gpu:0 --host 0.0.0.0 --port 8010 --use_hpip
Creating model: ('PP-LCNet_x0_5', None)
Using official model (PP-LCNet_x0_5), the model files will be automatically downloaded and saved in /root/.paddlex/official_models.
Connecting to https://paddle-model-ecology.bj.bcebos.com/paddlex/official_inference_model/paddle3.0.0/PP-LCNet_x0_5_infer.tar ...
Downloading PP-LCNet_x0_5_infer.tar ...
[==================================================] 100.00%
Extracting PP-LCNet_x0_5_infer.tar
[==================================================] 100.00%
grep: warning: GREP_OPTIONS is deprecated; please use an alias or script
The Paddle Inference backend is selected with the default configuration. This may not provide optimal performance.
Using Paddle Inference backend
Paddle predictor option: device_type: gpu, device_id: 0, run_mode: paddle, trt_dynamic_shapes: {'x': [[1, 3, 224, 224], [1, 3, 224, 224], [8, 3, 224, 224]]}, cpu_threads: 10, delete_pass: [], enable_new_ir: True, enable_cinn: False, trt_cfg_setting: {}, trt_use_dynamic_shapes: True, trt_collect_shape_range_info: True, trt_discard_cached_shape_range_info: False, trt_dynamic_shape_input_data: None, trt_shape_range_info_path: None, trt_allow_rebuild_at_runtime: True, mkldnn_cache_capacity: 10
INFO: Started server process [4305]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://0.0.0.0:8010 (Press CTRL+C to quit)
—Reply to this email directly, view it on GitHub, or unsubscribe.You are receiving this because you commented.Message ID: ***@***.***>
[
{
***@***.***": "http://schema.org",
***@***.***": "EmailMessage",
"potentialAction": {
***@***.***": "ViewAction",
"target": "#2698 (comment)",
"url": "#2698 (comment)",
"name": "View Discussion"
},
"description": "View this Discussion on GitHub",
"publisher": {
***@***.***": "Organization",
"name": "GitHub",
"url": "https://github.com"
}
}
]
|
Beta Was this translation helpful? Give feedback.
-
1,高性能推理感觉速度差不多呀,我用的是ocr产线,纯cpu配置8核32G内存,安装 Paddle2ONNX 插件 ,有什么好的建议,目前识别一张100字的英文图片,10秒以上了,每次初始化ocr都花3~5秒。2,服务化部署后支持切换ocr识别模型吗,我想根据前端传的类型来具体初始化是英文还是中文模型,目前好像做不到。3,我通过python脚本方式集成,但是每次识别都必须初始化一次OCR,这是什么原因?如果在函数外先初始化一次,再传入图像识别,第一次识别成功,第二次就失败,第三次就成功。所以目前每次传过来图像,我都先初始化一次,再识别。 |
Beta Was this translation helpful? Give feedback.
Uh oh!
There was an error while loading. Please reload this page.
-
PaddleX/latest/pipeline_deploy/high_performance_inference
https://paddlepaddle.github.io/PaddleX/latest/pipeline_deploy/high_performance_inference.html
Beta Was this translation helpful? Give feedback.
All reactions