Skip to content

Commit 283f453

Browse files
authored
[docs] 修复 api 文档中函数声明的名称【Part3】 (#6688)
* fix api part3 * use decorator
1 parent bdb6b3a commit 283f453

13 files changed

+13
-13
lines changed

docs/api/paddle/nn/AdaptiveAvgPool2D_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
AdaptiveAvgPool2D
44
-------------------------------
55

6-
.. py:function:: paddle.nn.AdaptiveAvgPool2D(output_size, data_format="NCHW", name=None)
6+
.. py:class:: paddle.nn.AdaptiveAvgPool2D(output_size, data_format="NCHW", name=None)
77
88
根据输入 `x` , `output_size` 等参数对一个输入 Tensor 计算 2D 的自适应平均池化。输入和输出都是 4-D Tensor,
99
默认是以 `NCHW` 格式表示的,其中 `N` 是 batch size, `C` 是通道数,`H` 是输入特征的高度,`W` 是输入特征的宽度。

docs/api/paddle/nn/AdaptiveAvgPool3D_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
AdaptiveAvgPool3D
44
-------------------------------
55

6-
.. py:function:: paddle.nn.AdaptiveAvgPool3D(output_size, data_format="NCDHW", name=None)
6+
.. py:class:: paddle.nn.AdaptiveAvgPool3D(output_size, data_format="NCDHW", name=None)
77
88
根据输入 `x` , `output_size` 等参数对一个输入 Tensor 计算 3D 的自适应平均池化。输入和输出都是 5-D Tensor,
99
默认是以 `NCDHW` 格式表示的,其中 `N` 是 batch size, `C` 是通道数,`D` 是特征图长度,`H` 是输入特征的高度,`W` 是输入特征的宽度。

docs/api/paddle/nn/AdaptiveMaxPool1D_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
AdaptiveMaxPool1D
44
-------------------------------
55

6-
.. py:function:: paddle.nn.AdaptiveMaxPool1D(output_size, return_mask=False, name=None)
6+
.. py:class:: paddle.nn.AdaptiveMaxPool1D(output_size, return_mask=False, name=None)
77
88
根据输入 `x` , `output_size` 等参数对一个输入 Tensor 计算 1D 的自适应最大池化。输入和输出都是 3-D Tensor,
99
默认是以 `NCL` 格式表示的,其中 `N` 是 batch size, `C` 是通道数,`L` 是输入特征的长度。

docs/api/paddle/nn/Dropout3D_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
Dropout3D
44
-------------------------------
55

6-
.. py:function:: paddle.nn.Dropout3D(p=0.5, data_format='NCDHW', name=None)
6+
.. py:class:: paddle.nn.Dropout3D(p=0.5, data_format='NCDHW', name=None)
77
88
根据丢弃概率 `p`,在训练过程中随机将某些通道特征图置 0 (对一个形状为 `NCDHW` 的 5 维 Tensor,通道特征图指的是其中的形状为 `DHW` 的 3 维特征图)。Dropout3D 可以提高通道特征图之间的独立性。论文请参考:`Efficient Object Localization Using Convolutional Networks <https://arxiv.org/abs/1411.4280>`_
99

docs/api/paddle/nn/Dropout_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
Dropout
44
-------------------------------
55

6-
.. py:function:: paddle.nn.Dropout(p=0.5, axis=None, mode="upscale_in_train", name=None)
6+
.. py:class:: paddle.nn.Dropout(p=0.5, axis=None, mode="upscale_in_train", name=None)
77
88
Dropout 是一种正则化手段,根据给定的丢弃概率 `p`,在训练过程中随机将一些神经元输出设置为 0,通过阻止神经元节点间的相关性来减少过拟合。论文请参考:`Improving neural networks by preventing co-adaptation of feature detectors <https://arxiv.org/abs/1207.0580>`_
99

docs/api/paddle/nn/Flatten_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
Flatten
44
-------------------------------
55

6-
.. py:function:: paddle.nn.Flatten(start_axis=1, stop_axis=-1)
6+
.. py:class:: paddle.nn.Flatten(start_axis=1, stop_axis=-1)
77
88
99

docs/api/paddle/nn/Fold_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
Fold
44
-------------------------------
55

6-
.. py:function:: paddle.nn.Fold(output_sizes, kernel_sizes, dilations=1, paddings=0, strides=1, name=None)
6+
.. py:class:: paddle.nn.Fold(output_sizes, kernel_sizes, dilations=1, paddings=0, strides=1, name=None)
77
88
将一个滑动局部块组合成一个大的 Tensor。通常也被称为 col2im,用于批处理二维图像 Tensor。Fold 通过对所有包含块的值求和来计算结果中的每个大 Tensor 的组合值。
99

docs/api/paddle/nn/FractionalMaxPool3D_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@
44
FractionalMaxPool3D
55
-------------------------------
66

7-
.. py:function:: paddle.nn.FractionalMaxPool3D(output_size, kernel_size=None, random_u=None, return_mask=False, name=None)
7+
.. py:class:: paddle.nn.FractionalMaxPool3D(output_size, kernel_size=None, random_u=None, return_mask=False, name=None)
88
99
对输入的 Tensor `x` 采取 `2` 维分数阶最大值池化操作,具体可以参考论文:
1010

docs/api/paddle/nn/Hardsigmoid_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
Hardsigmoid
44
-------------------------------
55

6-
.. py:function:: paddle.nn.Hardsigmoid(name=None)
6+
.. py:class:: paddle.nn.Hardsigmoid(name=None)
77
88
Hardsigmoid 激活层,用于创建一个 `Hardsigmoid` 类的可调用对象。sigmoid 的分段线性逼近激活函数,速度比 sigmoid 快,详细解释参见 `Noisy Activation Functions <https://arxiv.org/abs/1603.00391>`_ 。
99

docs/api/paddle/nn/Hardswish_cn.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -3,7 +3,7 @@
33
Hardswish
44
-------------------------------
55

6-
.. py:function:: paddle.nn.Hardswish(name=None)
6+
.. py:class:: paddle.nn.Hardswish(name=None)
77
88
Hardswish 激活函数。创建一个 `Hardswish` 类的可调用对象。在 MobileNetV3 架构中被提出,相较于 :ref:`cn_api_paddle_nn_Swish` 函数,具有数值稳定性好,计算速度快等优点,具体原理请参考:`Searching for MobileNetV3 <https://arxiv.org/pdf/1905.02244.pdf>`_ 。
99

0 commit comments

Comments
 (0)