@@ -15,6 +15,7 @@ MATCHER (DoubleMore, "")
1515 return get<0 >(arg) > get<1 >(arg);
1616}
1717
18+
1819/*
1920 * For Lobatto nodes, the resulting method should of order 2*M-2 with M=number of nodes
2021 * The test below verifies that the code approximately (up to a safety factor) reproduces
@@ -30,7 +31,6 @@ TEST(ConvergenceTest, ScalarSDC)
3031
3132 vector<double > err (nsteps.size ());
3233 vector<double > convrate (nsteps.size ()-1 );
33- vector<double > expected_cr (nsteps.size ()-1 );
3434
3535 double dt;
3636
@@ -52,15 +52,14 @@ TEST(ConvergenceTest, ScalarSDC)
5252 for ( size_t i = 0 ; i<=nsteps_l-2 ; ++i)
5353 {
5454 convrate[i] = log10 (err[i+1 ]/err[i])/log10 (double (nsteps[i])/double (nsteps[i+1 ]));
55- // The expected convergence rate for Lobatto nodes is 2*nnodes-2, but because
56- // it will typically be not matched exactly, put in a security factor
57- expected_cr[i] = 0.9 *double (2 *nnodes-2 );
55+
56+ EXPECT_THAT (convrate[i], testing::DoubleNear (double (2 *nnodes-2 ), 0.99 )) << " Convergence rate at node " << i << " not within expected range" ;
5857 }
5958
6059 // NOTE: There is probably a much more elegant way to test this, because
6160 // expected_cr contains the same value in all entries. But I could not so far figure
6261 // out how to build a more clever MATCHER here so far....
63- EXPECT_THAT (convrate, testing::Pointwise (DoubleMore (), expected_cr ));
62+ // EXPECT_THAT(convrate, testing::Pointwise(DoubleMore(), expected_cr ));
6463
6564 }
6665}
0 commit comments