Skip to content

Commit 3507d47

Browse files
committed
deploy: 0305781
1 parent 6680811 commit 3507d47

File tree

1 file changed

+95
-0
lines changed

1 file changed

+95
-0
lines changed

references/index.html

Lines changed: 95 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -960,6 +960,101 @@ <h2 id="year2025" class="year">2025 <span class="count-stat"></span></h2>
960960
</div>
961961

962962

963+
</div>
964+
</li>
965+
<li><div class="bibtex-entry-container">
966+
<div>
967+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
968+
<div class="row">
969+
<div class="col-md-12 ref-label label label-default">
970+
DaiEtAl2025
971+
</div>
972+
</div>
973+
</div>
974+
975+
<div class="bibtex-ref-entry">
976+
<span id="DaiEtAl2025">D. Dai, Q. Li, and H. Song, “A parallel solver for random input problems via Karhunen-Loève expansion and diagonalized coarse grid correction,” arXiv:2510.26180v1 [math.NA], 2025 [Online]. Available at: <a href="http://arxiv.org/abs/2510.26180v1" target="_blank">http://arxiv.org/abs/2510.26180v1</a></span>
977+
</div>
978+
979+
980+
<div class="row mt-4">
981+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
982+
<div class="btn-group btn-group-xs" role="group">
983+
984+
<button class="button" data-toggle="modal" data-target="#modalDaiEtAl2025Bibtex" aria-expanded="false"
985+
aria-controls="modalDaiEtAl2025Bibtex">
986+
BibTeX
987+
</button>
988+
989+
</div>
990+
<div class="btn-group btn-group-xs" role="group">
991+
992+
<button class="button" data-toggle="modal" data-target="#modalDaiEtAl2025Abstract" aria-expanded="false"
993+
aria-controls="modalDaiEtAl2025Abstract">
994+
Abstract
995+
</button>
996+
997+
</div>
998+
</div>
999+
</div>
1000+
</div>
1001+
1002+
<div class="modal" id="modalDaiEtAl2025Bibtex" tabindex="-1" role="dialog"
1003+
aria-labelledby="modalDaiEtAl2025BibtexTitle" aria-hidden="true">
1004+
<div class="modal-background">
1005+
<div class="modal-card">
1006+
<div class="modal-content">
1007+
<header class="modal-card-head">
1008+
<div class="modal-card-head-content">
1009+
<div>
1010+
<p class="modal-card-title" id="modalDaiEtAl2025BibtexTitle">
1011+
BibTeX entry <code>DaiEtAl2025</code>
1012+
</p>
1013+
</div>
1014+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
1015+
aria-hidden="true">&times;</span></button>
1016+
</div>
1017+
</header>
1018+
<section class="modal-card-body">
1019+
<pre class="abstract">@unpublished{DaiEtAl2025,
1020+
author = {Dai, Dou and Li, Qiuqi and Song, Huailing},
1021+
howpublished = {arXiv:2510.26180v1 [math.NA]},
1022+
title = {A parallel solver for random input problems via Karhunen-Loève expansion and diagonalized coarse grid correction},
1023+
url = {http://arxiv.org/abs/2510.26180v1},
1024+
year = {2025}
1025+
}
1026+
</pre>
1027+
</section>
1028+
</div>
1029+
</div>
1030+
</div>
1031+
</div>
1032+
1033+
1034+
<div class="modal" id="modalDaiEtAl2025Abstract" tabindex="-1" role="dialog"
1035+
aria-labelledby="modalDaiEtAl2025AbstractTitle" aria-hidden="true">
1036+
<div class="modal-background">
1037+
<div class="modal-card">
1038+
<div class="modal-content">
1039+
<header class="modal-card-head">
1040+
<div class="modal-card-head-content">
1041+
<div>
1042+
<p class="modal-card-title" id="modalDaiEtAl2025AbstractTitle">
1043+
Abstract for BibTeX entry <code>DaiEtAl2025</code>
1044+
</p>
1045+
</div>
1046+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
1047+
aria-hidden="true">&times;</span></button>
1048+
</div>
1049+
</header>
1050+
<section class="modal-card-body">
1051+
This paper is dedicated to enhancing the computational efficiency of traditional parallel-in-time methods for solving stochastic initial-value problems. The standard parareal algorithm often suffers from slow convergence when applied to problems with stochastic inputs, primarily due to the poor quality of the initial guess. To address this issue, we propose a hybrid parallel algorithm, termed KLE-CGC, which integrates the Karhunen-Loève (KL) expansion with the coarse grid correction (CGC). The method first employs the KL expansion to achieve a low-dimensional parameterization of high-dimensional stochastic parameter fields. Subsequently, a generalized Polynomial Chaos (gPC) spectral surrogate model is constructed to enable rapid prediction of the solution field. Utilizing this prediction as the initial value significantly improves the initial accuracy for the parareal iterations. A rigorous convergence analysis is provided, establishing that the proposed framework retains the same theoretical convergence rate as the standard parareal algorithm. Numerical experiments demonstrate that KLE-CGC maintains the same convergence order as the original algorithm while substantially reducing the number of iterations and improving parallel scalability.
1052+
</section>
1053+
</div>
1054+
</div>
1055+
</div>
1056+
</div>
1057+
9631058
</div>
9641059
</li>
9651060
<li><div class="bibtex-entry-container">

0 commit comments

Comments
 (0)