Skip to content

Commit 3521054

Browse files
committed
deploy: 87cc7ba
1 parent 0ac4d30 commit 3521054

File tree

1 file changed

+95
-0
lines changed

1 file changed

+95
-0
lines changed

references/index.html

Lines changed: 95 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -653,6 +653,101 @@ <h2 id="year2025" class="year">2025 <span class="count-stat"></span></h2>
653653
</div>
654654
</div>
655655

656+
</div>
657+
</li>
658+
<li><div class="bibtex-entry-container">
659+
<div>
660+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
661+
<div class="row">
662+
<div class="col-md-12 ref-label label label-default">
663+
EngwerEtAl2025
664+
</div>
665+
</div>
666+
</div>
667+
668+
<div class="bibtex-ref-entry">
669+
<span id="EngwerEtAl2025">C. Engwer, A. Schell, and N.-A. Dreier, “Vectorised Parallel in Time methods for low-order discretizations with application to Porous Media problems,” arXiv:2504.02117v1 [math.NA], 2025 [Online]. Available at: <a href="http://arxiv.org/abs/2504.02117v1" target="_blank">http://arxiv.org/abs/2504.02117v1</a></span>
670+
</div>
671+
672+
673+
<div class="row mt-4">
674+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
675+
<div class="btn-group btn-group-xs" role="group">
676+
677+
<button class="button" data-toggle="modal" data-target="#modalEngwerEtAl2025Bibtex" aria-expanded="false"
678+
aria-controls="modalEngwerEtAl2025Bibtex">
679+
BibTeX
680+
</button>
681+
682+
</div>
683+
<div class="btn-group btn-group-xs" role="group">
684+
685+
<button class="button" data-toggle="modal" data-target="#modalEngwerEtAl2025Abstract" aria-expanded="false"
686+
aria-controls="modalEngwerEtAl2025Abstract">
687+
Abstract
688+
</button>
689+
690+
</div>
691+
</div>
692+
</div>
693+
</div>
694+
695+
<div class="modal" id="modalEngwerEtAl2025Bibtex" tabindex="-1" role="dialog"
696+
aria-labelledby="modalEngwerEtAl2025BibtexTitle" aria-hidden="true">
697+
<div class="modal-background">
698+
<div class="modal-card">
699+
<div class="modal-content">
700+
<header class="modal-card-head">
701+
<div class="modal-card-head-content">
702+
<div>
703+
<p class="modal-card-title" id="modalEngwerEtAl2025BibtexTitle">
704+
BibTeX entry <code>EngwerEtAl2025</code>
705+
</p>
706+
</div>
707+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
708+
aria-hidden="true">&times;</span></button>
709+
</div>
710+
</header>
711+
<section class="modal-card-body">
712+
<pre class="abstract">@unpublished{EngwerEtAl2025,
713+
author = {Engwer, Christian and Schell, Alexander and Dreier, Nils-Arne},
714+
howpublished = {arXiv:2504.02117v1 [math.NA]},
715+
title = {Vectorised Parallel in Time methods for low-order discretizations with application to Porous Media problems},
716+
url = {http://arxiv.org/abs/2504.02117v1},
717+
year = {2025}
718+
}
719+
</pre>
720+
</section>
721+
</div>
722+
</div>
723+
</div>
724+
</div>
725+
726+
727+
<div class="modal" id="modalEngwerEtAl2025Abstract" tabindex="-1" role="dialog"
728+
aria-labelledby="modalEngwerEtAl2025AbstractTitle" aria-hidden="true">
729+
<div class="modal-background">
730+
<div class="modal-card">
731+
<div class="modal-content">
732+
<header class="modal-card-head">
733+
<div class="modal-card-head-content">
734+
<div>
735+
<p class="modal-card-title" id="modalEngwerEtAl2025AbstractTitle">
736+
Abstract for BibTeX entry <code>EngwerEtAl2025</code>
737+
</p>
738+
</div>
739+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
740+
aria-hidden="true">&times;</span></button>
741+
</div>
742+
</header>
743+
<section class="modal-card-body">
744+
High order methods have shown great potential to overcome performance issues of simulations of partial differential equations (PDEs) on modern hardware, still many users stick to low-order, matrixbased simulations, in particular in porous media applications. Heterogeneous coefficients and low regularity of the solution are reasons not to employ high order discretizations. We present a new approach for the simulation of instationary PDEs that allows to partially mitigate the performance problems. By reformulating the original problem we derive a parallel in time time integrator that increases the arithmetic intensity and introduces additional structure into the problem. By this it helps accelerate matrix-based simulations on modern hardware architectures. Based on a system for multiple time steps we will formulate a matrix equation that can be solved using vectorised solvers like Block Krylov methods. The structure of this approach makes it applicable for a wide range of linear and nonlinear problems. In our numerical experiments we present some first results for three different PDEs, a linear convection-diffusion equation, a nonlinear diffusion-reaction equation and a realistic example based on the Richards’ equation.
745+
</section>
746+
</div>
747+
</div>
748+
</div>
749+
</div>
750+
656751
</div>
657752
</li>
658753
<li><div class="bibtex-entry-container">

0 commit comments

Comments
 (0)