Skip to content

Commit 370a65b

Browse files
committed
deploy: 9ee31c2
1 parent fe9d339 commit 370a65b

File tree

1 file changed

+95
-0
lines changed

1 file changed

+95
-0
lines changed

references/index.html

Lines changed: 95 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4678,6 +4678,101 @@ <h2 id="year2024" class="year">2024 <span class="count-stat"></span></h2>
46784678
</div>
46794679
</div>
46804680

4681+
</div>
4682+
</li>
4683+
<li><div class="bibtex-entry-container">
4684+
<div>
4685+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
4686+
<div class="row">
4687+
<div class="col-md-12 ref-label label label-default">
4688+
HuangEtAl2024d
4689+
</div>
4690+
</div>
4691+
</div>
4692+
4693+
<div class="bibtex-ref-entry">
4694+
<span id="HuangEtAl2024d">J. Huang and Y. Xu, “A Parareal exponential integrator finite element method for linear parabolic equations,” arXiv:2412.01138v1 [math.NA], 2024 [Online]. Available at: <a href="http://arxiv.org/abs/2412.01138v1" target="_blank">http://arxiv.org/abs/2412.01138v1</a></span>
4695+
</div>
4696+
4697+
4698+
<div class="row mt-4">
4699+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
4700+
<div class="btn-group btn-group-xs" role="group">
4701+
4702+
<button class="button" data-toggle="modal" data-target="#modalHuangEtAl2024dBibtex" aria-expanded="false"
4703+
aria-controls="modalHuangEtAl2024dBibtex">
4704+
BibTeX
4705+
</button>
4706+
4707+
</div>
4708+
<div class="btn-group btn-group-xs" role="group">
4709+
4710+
<button class="button" data-toggle="modal" data-target="#modalHuangEtAl2024dAbstract" aria-expanded="false"
4711+
aria-controls="modalHuangEtAl2024dAbstract">
4712+
Abstract
4713+
</button>
4714+
4715+
</div>
4716+
</div>
4717+
</div>
4718+
</div>
4719+
4720+
<div class="modal" id="modalHuangEtAl2024dBibtex" tabindex="-1" role="dialog"
4721+
aria-labelledby="modalHuangEtAl2024dBibtexTitle" aria-hidden="true">
4722+
<div class="modal-background">
4723+
<div class="modal-card">
4724+
<div class="modal-content">
4725+
<header class="modal-card-head">
4726+
<div class="modal-card-head-content">
4727+
<div>
4728+
<p class="modal-card-title" id="modalHuangEtAl2024dBibtexTitle">
4729+
BibTeX entry <code>HuangEtAl2024d</code>
4730+
</p>
4731+
</div>
4732+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
4733+
aria-hidden="true">&times;</span></button>
4734+
</div>
4735+
</header>
4736+
<section class="modal-card-body">
4737+
<pre class="abstract">@unpublished{HuangEtAl2024d,
4738+
author = {Huang, Jianguo and Xu, Yuejin},
4739+
howpublished = {arXiv:2412.01138v1 [math.NA]},
4740+
title = {A Parareal exponential integrator finite element method for linear parabolic equations},
4741+
url = {http://arxiv.org/abs/2412.01138v1},
4742+
year = {2024}
4743+
}
4744+
</pre>
4745+
</section>
4746+
</div>
4747+
</div>
4748+
</div>
4749+
</div>
4750+
4751+
4752+
<div class="modal" id="modalHuangEtAl2024dAbstract" tabindex="-1" role="dialog"
4753+
aria-labelledby="modalHuangEtAl2024dAbstractTitle" aria-hidden="true">
4754+
<div class="modal-background">
4755+
<div class="modal-card">
4756+
<div class="modal-content">
4757+
<header class="modal-card-head">
4758+
<div class="modal-card-head-content">
4759+
<div>
4760+
<p class="modal-card-title" id="modalHuangEtAl2024dAbstractTitle">
4761+
Abstract for BibTeX entry <code>HuangEtAl2024d</code>
4762+
</p>
4763+
</div>
4764+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
4765+
aria-hidden="true">&times;</span></button>
4766+
</div>
4767+
</header>
4768+
<section class="modal-card-body">
4769+
In this paper, for solving a class of linear parabolic equations in rectangular domains, we have proposed an efficient Parareal exponential integrator finite element method. The proposed method first uses the finite element approximation with continuous multilinear rectangular basis function for spatial discretization, and then takes the Runge-Kutta approach accompanied with Parareal framework for time integration of the resulting semi-discrete system to produce parallel-in-time numerical solution. Under certain regularity assumptions, fully-discrete error estimates in L^2-norm are derived for the proposed schemes with random interpolation nodes. Moreover, a fast solver can be provided based on tensor product spectral decomposition and fast Fourier transform (FFT), since the mass and coefficient matrices of the proposed method can be simultaneously diagonalized with an orthogonal matrix. A series of numerical experiments in various dimensions are also presented to validate the theoretical results and demonstrate the excellent performance of the proposed method.
4770+
</section>
4771+
</div>
4772+
</div>
4773+
</div>
4774+
</div>
4775+
46814776
</div>
46824777
</li>
46834778
<li><div class="bibtex-entry-container">

0 commit comments

Comments
 (0)