Skip to content

Commit 4b01315

Browse files
committed
deploy: e493227
1 parent 956ca09 commit 4b01315

File tree

1 file changed

+0
-95
lines changed

1 file changed

+0
-95
lines changed

references/index.html

Lines changed: 0 additions & 95 deletions
Original file line numberDiff line numberDiff line change
@@ -218,101 +218,6 @@ <h2>Statistics</h2>
218218
<h2 id="year2024" class="year">2024 <span class="count-stat"></span></h2>
219219

220220
<ol class="bibliography"><li><div class="bibtex-entry-container">
221-
<div>
222-
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
223-
<div class="row">
224-
<div class="col-md-12 ref-label label label-default">
225-
BetckeEtAl2024
226-
</div>
227-
</div>
228-
</div>
229-
230-
<div class="bibtex-ref-entry">
231-
<span id="BetckeEtAl2024">M. M. Betcke, L. M. Kreusser, and D. Murari, “Parallel-in-Time Solutions with Random Projection Neural Networks,” arXiv:2408.09756v1 [math.NA], 2024 [Online]. Available at: <a href="http://arxiv.org/abs/2408.09756v1" target="_blank">http://arxiv.org/abs/2408.09756v1</a></span>
232-
</div>
233-
234-
235-
<div class="row mt-4">
236-
<div class="btn-group btn-group-xs btn-group-justified" role="group">
237-
<div class="btn-group btn-group-xs" role="group">
238-
239-
<button class="button" data-toggle="modal" data-target="#modalBetckeEtAl2024Bibtex" aria-expanded="false"
240-
aria-controls="modalBetckeEtAl2024Bibtex">
241-
BibTeX
242-
</button>
243-
244-
</div>
245-
<div class="btn-group btn-group-xs" role="group">
246-
247-
<button class="button" data-toggle="modal" data-target="#modalBetckeEtAl2024Abstract" aria-expanded="false"
248-
aria-controls="modalBetckeEtAl2024Abstract">
249-
Abstract
250-
</button>
251-
252-
</div>
253-
</div>
254-
</div>
255-
</div>
256-
257-
<div class="modal" id="modalBetckeEtAl2024Bibtex" tabindex="-1" role="dialog"
258-
aria-labelledby="modalBetckeEtAl2024BibtexTitle" aria-hidden="true">
259-
<div class="modal-background">
260-
<div class="modal-card">
261-
<div class="modal-content">
262-
<header class="modal-card-head">
263-
<div class="modal-card-head-content">
264-
<div>
265-
<p class="modal-card-title" id="modalBetckeEtAl2024BibtexTitle">
266-
BibTeX entry <code>BetckeEtAl2024</code>
267-
</p>
268-
</div>
269-
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
270-
aria-hidden="true">&times;</span></button>
271-
</div>
272-
</header>
273-
<section class="modal-card-body">
274-
<pre class="abstract">@unpublished{BetckeEtAl2024,
275-
author = {Betcke, Marta M. and Kreusser, Lisa Maria and Murari, Davide},
276-
howpublished = {arXiv:2408.09756v1 [math.NA]},
277-
title = {Parallel-in-Time Solutions with Random Projection Neural Networks},
278-
url = {http://arxiv.org/abs/2408.09756v1},
279-
year = {2024}
280-
}
281-
</pre>
282-
</section>
283-
</div>
284-
</div>
285-
</div>
286-
</div>
287-
288-
289-
<div class="modal" id="modalBetckeEtAl2024Abstract" tabindex="-1" role="dialog"
290-
aria-labelledby="modalBetckeEtAl2024AbstractTitle" aria-hidden="true">
291-
<div class="modal-background">
292-
<div class="modal-card">
293-
<div class="modal-content">
294-
<header class="modal-card-head">
295-
<div class="modal-card-head-content">
296-
<div>
297-
<p class="modal-card-title" id="modalBetckeEtAl2024AbstractTitle">
298-
Abstract for BibTeX entry <code>BetckeEtAl2024</code>
299-
</p>
300-
</div>
301-
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
302-
aria-hidden="true">&times;</span></button>
303-
</div>
304-
</header>
305-
<section class="modal-card-body">
306-
This paper considers one of the fundamental parallel-in-time methods for the solution of ordinary differential equations, Parareal, and extends it by adopting a neural network as a coarse propagator. We provide a theoretical analysis of the convergence properties of the proposed algorithm and show its effectiveness for several examples, including Lorenz and Burgers’ equations. In our numerical simulations, we further specialize the underpinning neural architecture to Random Projection Neural Networks (RPNNs), a 2-layer neural network where the first layer weights are drawn at random rather than optimized. This restriction substantially increases the efficiency of fitting RPNN’s weights in comparison to a standard feedforward network without negatively impacting the accuracy, as demonstrated in the SIR system example.
307-
</section>
308-
</div>
309-
</div>
310-
</div>
311-
</div>
312-
313-
</div>
314-
</li>
315-
<li><div class="bibtex-entry-container">
316221
<div>
317222
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
318223
<div class="row">

0 commit comments

Comments
 (0)