Skip to content

Commit 9c5471c

Browse files
committed
deploy: 89d9eb0
1 parent e994d01 commit 9c5471c

File tree

1 file changed

+95
-0
lines changed

1 file changed

+95
-0
lines changed

references/index.html

Lines changed: 95 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1643,6 +1643,101 @@ <h2 id="year2024" class="year">2024 <span class="count-stat"></span></h2>
16431643
</div>
16441644

16451645

1646+
</div>
1647+
</li>
1648+
<li><div class="bibtex-entry-container">
1649+
<div>
1650+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
1651+
<div class="row">
1652+
<div class="col-md-12 ref-label label label-default">
1653+
MardalEtAl2024
1654+
</div>
1655+
</div>
1656+
</div>
1657+
1658+
<div class="bibtex-ref-entry">
1659+
<span id="MardalEtAl2024">K.-A. Mardal, J. Sogn, and S. Takacs, “A robust and time-parallel preconditioner for parabolic reconstruction problems using Isogeometric Analysis,” arXiv:2407.17964v1 [math.NA], 2024 [Online]. Available at: <a href="http://arxiv.org/abs/2407.17964v1" target="_blank">http://arxiv.org/abs/2407.17964v1</a></span>
1660+
</div>
1661+
1662+
1663+
<div class="row mt-4">
1664+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
1665+
<div class="btn-group btn-group-xs" role="group">
1666+
1667+
<button class="button" data-toggle="modal" data-target="#modalMardalEtAl2024Bibtex" aria-expanded="false"
1668+
aria-controls="modalMardalEtAl2024Bibtex">
1669+
BibTeX
1670+
</button>
1671+
1672+
</div>
1673+
<div class="btn-group btn-group-xs" role="group">
1674+
1675+
<button class="button" data-toggle="modal" data-target="#modalMardalEtAl2024Abstract" aria-expanded="false"
1676+
aria-controls="modalMardalEtAl2024Abstract">
1677+
Abstract
1678+
</button>
1679+
1680+
</div>
1681+
</div>
1682+
</div>
1683+
</div>
1684+
1685+
<div class="modal" id="modalMardalEtAl2024Bibtex" tabindex="-1" role="dialog"
1686+
aria-labelledby="modalMardalEtAl2024BibtexTitle" aria-hidden="true">
1687+
<div class="modal-background">
1688+
<div class="modal-card">
1689+
<div class="modal-content">
1690+
<header class="modal-card-head">
1691+
<div class="modal-card-head-content">
1692+
<div>
1693+
<p class="modal-card-title" id="modalMardalEtAl2024BibtexTitle">
1694+
BibTeX entry <code>MardalEtAl2024</code>
1695+
</p>
1696+
</div>
1697+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
1698+
aria-hidden="true">&times;</span></button>
1699+
</div>
1700+
</header>
1701+
<section class="modal-card-body">
1702+
<pre class="abstract">@unpublished{MardalEtAl2024,
1703+
author = {Mardal, Kent-Andre and Sogn, Jarle and Takacs, Stefan},
1704+
howpublished = {arXiv:2407.17964v1 [math.NA]},
1705+
title = {A robust and time-parallel preconditioner for parabolic reconstruction problems using Isogeometric Analysis},
1706+
url = {http://arxiv.org/abs/2407.17964v1},
1707+
year = {2024}
1708+
}
1709+
</pre>
1710+
</section>
1711+
</div>
1712+
</div>
1713+
</div>
1714+
</div>
1715+
1716+
1717+
<div class="modal" id="modalMardalEtAl2024Abstract" tabindex="-1" role="dialog"
1718+
aria-labelledby="modalMardalEtAl2024AbstractTitle" aria-hidden="true">
1719+
<div class="modal-background">
1720+
<div class="modal-card">
1721+
<div class="modal-content">
1722+
<header class="modal-card-head">
1723+
<div class="modal-card-head-content">
1724+
<div>
1725+
<p class="modal-card-title" id="modalMardalEtAl2024AbstractTitle">
1726+
Abstract for BibTeX entry <code>MardalEtAl2024</code>
1727+
</p>
1728+
</div>
1729+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
1730+
aria-hidden="true">&times;</span></button>
1731+
</div>
1732+
</header>
1733+
<section class="modal-card-body">
1734+
We consider a PDE-constrained optimization problem of tracking type with parabolic state equation. The solution to the problem is characterized by the Karush-Kuhn-Tucker (KKT) system, which we formulate using a strong variational formulation of the state equation and a super weak formulation of the adjoined state equation. This allows us to propose a preconditioner that is robust both in the regularization and the diffusion parameter. In order to discretize the problem, we use Isogeometric Analysis since it allows the construction of sufficiently smooth basis functions effortlessly. To realize the preconditioner, one has to solve a problem over the whole space time cylinder that is elliptic with respect to certain non-standard norms. Using a fast diagonalization approach in time, we reformulate the problem as a collection of elliptic problems in space only. These problems are not only smaller, but our approach also allows to solve them in a time-parallel way. We show the efficiency of the preconditioner by rigorous analysis and illustrate it with numerical experiments.
1735+
</section>
1736+
</div>
1737+
</div>
1738+
</div>
1739+
</div>
1740+
16461741
</div>
16471742
</li>
16481743
<li><div class="bibtex-entry-container">

0 commit comments

Comments
 (0)