Skip to content

Commit a1bd342

Browse files
committed
deploy: 4882f66
1 parent f1e5ee2 commit a1bd342

File tree

1 file changed

+95
-0
lines changed

1 file changed

+95
-0
lines changed

references/index.html

Lines changed: 95 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -218,6 +218,101 @@ <h2>Statistics</h2>
218218
<h2 id="year2025" class="year">2025 <span class="count-stat"></span></h2>
219219

220220
<ol class="bibliography"><li><div class="bibtex-entry-container">
221+
<div>
222+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
223+
<div class="row">
224+
<div class="col-md-12 ref-label label label-default">
225+
ArrarasEtAl2025
226+
</div>
227+
</div>
228+
</div>
229+
230+
<div class="bibtex-ref-entry">
231+
<span id="ArrarasEtAl2025">A. Arrarás, F. J. Gaspar, I. Jimenez-Ciga, and L. Portero, “Space-time parallel iterative solvers for the integration of parabolic problems,” arXiv:2502.08370v1 [math.NA], 2025 [Online]. Available at: <a href="http://arxiv.org/abs/2502.08370v1" target="_blank">http://arxiv.org/abs/2502.08370v1</a></span>
232+
</div>
233+
234+
235+
<div class="row mt-4">
236+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
237+
<div class="btn-group btn-group-xs" role="group">
238+
239+
<button class="button" data-toggle="modal" data-target="#modalArrarasEtAl2025Bibtex" aria-expanded="false"
240+
aria-controls="modalArrarasEtAl2025Bibtex">
241+
BibTeX
242+
</button>
243+
244+
</div>
245+
<div class="btn-group btn-group-xs" role="group">
246+
247+
<button class="button" data-toggle="modal" data-target="#modalArrarasEtAl2025Abstract" aria-expanded="false"
248+
aria-controls="modalArrarasEtAl2025Abstract">
249+
Abstract
250+
</button>
251+
252+
</div>
253+
</div>
254+
</div>
255+
</div>
256+
257+
<div class="modal" id="modalArrarasEtAl2025Bibtex" tabindex="-1" role="dialog"
258+
aria-labelledby="modalArrarasEtAl2025BibtexTitle" aria-hidden="true">
259+
<div class="modal-background">
260+
<div class="modal-card">
261+
<div class="modal-content">
262+
<header class="modal-card-head">
263+
<div class="modal-card-head-content">
264+
<div>
265+
<p class="modal-card-title" id="modalArrarasEtAl2025BibtexTitle">
266+
BibTeX entry <code>ArrarasEtAl2025</code>
267+
</p>
268+
</div>
269+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
270+
aria-hidden="true">&times;</span></button>
271+
</div>
272+
</header>
273+
<section class="modal-card-body">
274+
<pre class="abstract">@unpublished{ArrarasEtAl2025,
275+
author = {Arrarás, Andrés and Gaspar, Francisco J. and Jimenez-Ciga, Iñigo and Portero, Laura},
276+
howpublished = {arXiv:2502.08370v1 [math.NA]},
277+
title = {Space-time parallel iterative solvers for the integration of parabolic problems},
278+
url = {http://arxiv.org/abs/2502.08370v1},
279+
year = {2025}
280+
}
281+
</pre>
282+
</section>
283+
</div>
284+
</div>
285+
</div>
286+
</div>
287+
288+
289+
<div class="modal" id="modalArrarasEtAl2025Abstract" tabindex="-1" role="dialog"
290+
aria-labelledby="modalArrarasEtAl2025AbstractTitle" aria-hidden="true">
291+
<div class="modal-background">
292+
<div class="modal-card">
293+
<div class="modal-content">
294+
<header class="modal-card-head">
295+
<div class="modal-card-head-content">
296+
<div>
297+
<p class="modal-card-title" id="modalArrarasEtAl2025AbstractTitle">
298+
Abstract for BibTeX entry <code>ArrarasEtAl2025</code>
299+
</p>
300+
</div>
301+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
302+
aria-hidden="true">&times;</span></button>
303+
</div>
304+
</header>
305+
<section class="modal-card-body">
306+
In view of the existing limitations of sequential computing, parallelization has emerged as an alternative in order to improve the speedup of numerical simulations. In the framework of evolutionary problems, space-time parallel methods offer the possibility to optimize parallelization. In the present paper, we propose a new family of these methods, built as a combination of the well-known parareal algorithm and suitable splitting techniques which permit us to parallelize in space. In particular, dimensional and domain decomposition splittings are considered for partitioning the elliptic operator, and first-order splitting time integrators are chosen as the propagators of the parareal algorithm to solve the resulting split problem. The major contribution of these methods is that, not only does the fine propagator perform in parallel, but also the coarse propagator. Unlike the classical version of the parareal algorithm, where all processors remain idle during the coarse propagator computations, the newly proposed schemes utilize the computational cores for both integrators. A convergence analysis of the methods is provided, and several numerical experiments are performed to test the solvers under consideration.
307+
</section>
308+
</div>
309+
</div>
310+
</div>
311+
</div>
312+
313+
</div>
314+
</li>
315+
<li><div class="bibtex-entry-container">
221316
<div>
222317
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
223318
<div class="row">

0 commit comments

Comments
 (0)