Skip to content

Commit d0ef58e

Browse files
committed
deploy: 04d1fae
1 parent dc324f7 commit d0ef58e

File tree

1 file changed

+190
-0
lines changed

1 file changed

+190
-0
lines changed

references/index.html

Lines changed: 190 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -387,6 +387,101 @@ <h2 id="year2025" class="year">2025 <span class="count-stat"></span></h2>
387387
</div>
388388

389389

390+
</div>
391+
</li>
392+
<li><div class="bibtex-entry-container">
393+
<div>
394+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
395+
<div class="row">
396+
<div class="col-md-12 ref-label label label-default">
397+
LaidinEtAl2025
398+
</div>
399+
</div>
400+
</div>
401+
402+
<div class="bibtex-ref-entry">
403+
<span id="LaidinEtAl2025">T. Laidin and T. Rey, “A Parareal in time numerical method for the collisional Vlasov equation in the hyperbolic scaling,” arXiv:2502.02704v1 [math.NA], 2025 [Online]. Available at: <a href="http://arxiv.org/abs/2502.02704v1" target="_blank">http://arxiv.org/abs/2502.02704v1</a></span>
404+
</div>
405+
406+
407+
<div class="row mt-4">
408+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
409+
<div class="btn-group btn-group-xs" role="group">
410+
411+
<button class="button" data-toggle="modal" data-target="#modalLaidinEtAl2025Bibtex" aria-expanded="false"
412+
aria-controls="modalLaidinEtAl2025Bibtex">
413+
BibTeX
414+
</button>
415+
416+
</div>
417+
<div class="btn-group btn-group-xs" role="group">
418+
419+
<button class="button" data-toggle="modal" data-target="#modalLaidinEtAl2025Abstract" aria-expanded="false"
420+
aria-controls="modalLaidinEtAl2025Abstract">
421+
Abstract
422+
</button>
423+
424+
</div>
425+
</div>
426+
</div>
427+
</div>
428+
429+
<div class="modal" id="modalLaidinEtAl2025Bibtex" tabindex="-1" role="dialog"
430+
aria-labelledby="modalLaidinEtAl2025BibtexTitle" aria-hidden="true">
431+
<div class="modal-background">
432+
<div class="modal-card">
433+
<div class="modal-content">
434+
<header class="modal-card-head">
435+
<div class="modal-card-head-content">
436+
<div>
437+
<p class="modal-card-title" id="modalLaidinEtAl2025BibtexTitle">
438+
BibTeX entry <code>LaidinEtAl2025</code>
439+
</p>
440+
</div>
441+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
442+
aria-hidden="true">&times;</span></button>
443+
</div>
444+
</header>
445+
<section class="modal-card-body">
446+
<pre class="abstract">@unpublished{LaidinEtAl2025,
447+
author = {Laidin, Tino and Rey, Thomas},
448+
howpublished = {arXiv:2502.02704v1 [math.NA]},
449+
title = {A Parareal in time numerical method for the collisional Vlasov equation in the hyperbolic scaling},
450+
url = {http://arxiv.org/abs/2502.02704v1},
451+
year = {2025}
452+
}
453+
</pre>
454+
</section>
455+
</div>
456+
</div>
457+
</div>
458+
</div>
459+
460+
461+
<div class="modal" id="modalLaidinEtAl2025Abstract" tabindex="-1" role="dialog"
462+
aria-labelledby="modalLaidinEtAl2025AbstractTitle" aria-hidden="true">
463+
<div class="modal-background">
464+
<div class="modal-card">
465+
<div class="modal-content">
466+
<header class="modal-card-head">
467+
<div class="modal-card-head-content">
468+
<div>
469+
<p class="modal-card-title" id="modalLaidinEtAl2025AbstractTitle">
470+
Abstract for BibTeX entry <code>LaidinEtAl2025</code>
471+
</p>
472+
</div>
473+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
474+
aria-hidden="true">&times;</span></button>
475+
</div>
476+
</header>
477+
<section class="modal-card-body">
478+
We present the design of a multiscale parareal method for kinetic equations in the fluid dynamic regime. The goal is to reduce the cost of a fully kinetic simulation using a parallel in time procedure. Using the multiscale property of kinetic models, the cheap, coarse propagator consists in a fluid solver and the fine (expensive) propagation is achieved through a kinetic solver for a collisional Vlasov equation. To validate our approach, we present simulations in the 1D in space, 3D in velocity settings over a wide range of initial data and kinetic regimes, showcasing the accuracy, efficiency, and the speedup capabilities of our method.
479+
</section>
480+
</div>
481+
</div>
482+
</div>
483+
</div>
484+
390485
</div>
391486
</li>
392487
<li><div class="bibtex-entry-container">
@@ -541,6 +636,101 @@ <h2 id="year2025" class="year">2025 <span class="count-stat"></span></h2>
541636
</div>
542637

543638

639+
</div>
640+
</li>
641+
<li><div class="bibtex-entry-container">
642+
<div>
643+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
644+
<div class="row">
645+
<div class="col-md-12 ref-label label label-default">
646+
ZhangEtAl2025
647+
</div>
648+
</div>
649+
</div>
650+
651+
<div class="bibtex-ref-entry">
652+
<span id="ZhangEtAl2025">L. Zhang, Q. Zhang, and L. Ji, “Parareal Algorithms for Stochastic Maxwell Equations Driven by Multiplicative Noise,” arXiv:2502.02473v1 [math.NA], 2025 [Online]. Available at: <a href="http://arxiv.org/abs/2502.02473v1" target="_blank">http://arxiv.org/abs/2502.02473v1</a></span>
653+
</div>
654+
655+
656+
<div class="row mt-4">
657+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
658+
<div class="btn-group btn-group-xs" role="group">
659+
660+
<button class="button" data-toggle="modal" data-target="#modalZhangEtAl2025Bibtex" aria-expanded="false"
661+
aria-controls="modalZhangEtAl2025Bibtex">
662+
BibTeX
663+
</button>
664+
665+
</div>
666+
<div class="btn-group btn-group-xs" role="group">
667+
668+
<button class="button" data-toggle="modal" data-target="#modalZhangEtAl2025Abstract" aria-expanded="false"
669+
aria-controls="modalZhangEtAl2025Abstract">
670+
Abstract
671+
</button>
672+
673+
</div>
674+
</div>
675+
</div>
676+
</div>
677+
678+
<div class="modal" id="modalZhangEtAl2025Bibtex" tabindex="-1" role="dialog"
679+
aria-labelledby="modalZhangEtAl2025BibtexTitle" aria-hidden="true">
680+
<div class="modal-background">
681+
<div class="modal-card">
682+
<div class="modal-content">
683+
<header class="modal-card-head">
684+
<div class="modal-card-head-content">
685+
<div>
686+
<p class="modal-card-title" id="modalZhangEtAl2025BibtexTitle">
687+
BibTeX entry <code>ZhangEtAl2025</code>
688+
</p>
689+
</div>
690+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
691+
aria-hidden="true">&times;</span></button>
692+
</div>
693+
</header>
694+
<section class="modal-card-body">
695+
<pre class="abstract">@unpublished{ZhangEtAl2025,
696+
author = {Zhang, Liying and Zhang, Qi and Ji, Lihai},
697+
howpublished = {arXiv:2502.02473v1 [math.NA]},
698+
title = {Parareal Algorithms for Stochastic Maxwell Equations Driven by Multiplicative Noise},
699+
url = {http://arxiv.org/abs/2502.02473v1},
700+
year = {2025}
701+
}
702+
</pre>
703+
</section>
704+
</div>
705+
</div>
706+
</div>
707+
</div>
708+
709+
710+
<div class="modal" id="modalZhangEtAl2025Abstract" tabindex="-1" role="dialog"
711+
aria-labelledby="modalZhangEtAl2025AbstractTitle" aria-hidden="true">
712+
<div class="modal-background">
713+
<div class="modal-card">
714+
<div class="modal-content">
715+
<header class="modal-card-head">
716+
<div class="modal-card-head-content">
717+
<div>
718+
<p class="modal-card-title" id="modalZhangEtAl2025AbstractTitle">
719+
Abstract for BibTeX entry <code>ZhangEtAl2025</code>
720+
</p>
721+
</div>
722+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
723+
aria-hidden="true">&times;</span></button>
724+
</div>
725+
</header>
726+
<section class="modal-card-body">
727+
This paper investigates the parareal algorithms for solving the stochastic Maxwell equations driven by multiplicative noise, focusing on their convergence, computational efficiency and numerical performance. The algorithms use the stochastic exponential integrator as the coarse propagator, while both the exact integrator and the stochastic exponential integrator are used as fine propagators. Theoretical analysis shows that the mean square convergence rates of the two algorithms selected above are proportional to k/2, depending on the iteration number of the algorithms. Numerical experiments validate these theoretical findings, demonstrating that larger iteration numbers k improve convergence rates, while larger damping coefficients σaccelerate the convergence of the algorithms. Furthermore, the algorithms maintain high accuracy and computational efficiency, highlighting their significant advantages over traditional exponential methods in long-term simulations.
728+
</section>
729+
</div>
730+
</div>
731+
</div>
732+
</div>
733+
544734
</div>
545735
</li></ol>
546736
<div class="row">

0 commit comments

Comments
 (0)