Skip to content

Commit e2c944a

Browse files
committed
deploy: ddf2358
1 parent 343bae4 commit e2c944a

File tree

1 file changed

+95
-0
lines changed

1 file changed

+95
-0
lines changed

references/index.html

Lines changed: 95 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -883,6 +883,101 @@ <h2 id="year2024" class="year">2024 <span class="count-stat"></span></h2>
883883
</div>
884884
</div>
885885

886+
</div>
887+
</li>
888+
<li><div class="bibtex-entry-container">
889+
<div>
890+
<div class="col-md-3 col-sm-12 bibtex-ref-meta hidden">
891+
<div class="row">
892+
<div class="col-md-12 ref-label label label-default">
893+
GattiglioEtAl2024b
894+
</div>
895+
</div>
896+
</div>
897+
898+
<div class="bibtex-ref-entry">
899+
<span id="GattiglioEtAl2024b">G. Gattiglio, L. Grigoryeva, and M. Tamborrino, “RandNet-Parareal: a time-parallel PDE solver using Random Neural Networks,” arXiv:2411.06225v1 [stat.CO], 2024 [Online]. Available at: <a href="http://arxiv.org/abs/2411.06225v1" target="_blank">http://arxiv.org/abs/2411.06225v1</a></span>
900+
</div>
901+
902+
903+
<div class="row mt-4">
904+
<div class="btn-group btn-group-xs btn-group-justified" role="group">
905+
<div class="btn-group btn-group-xs" role="group">
906+
907+
<button class="button" data-toggle="modal" data-target="#modalGattiglioEtAl2024bBibtex" aria-expanded="false"
908+
aria-controls="modalGattiglioEtAl2024bBibtex">
909+
BibTeX
910+
</button>
911+
912+
</div>
913+
<div class="btn-group btn-group-xs" role="group">
914+
915+
<button class="button" data-toggle="modal" data-target="#modalGattiglioEtAl2024bAbstract" aria-expanded="false"
916+
aria-controls="modalGattiglioEtAl2024bAbstract">
917+
Abstract
918+
</button>
919+
920+
</div>
921+
</div>
922+
</div>
923+
</div>
924+
925+
<div class="modal" id="modalGattiglioEtAl2024bBibtex" tabindex="-1" role="dialog"
926+
aria-labelledby="modalGattiglioEtAl2024bBibtexTitle" aria-hidden="true">
927+
<div class="modal-background">
928+
<div class="modal-card">
929+
<div class="modal-content">
930+
<header class="modal-card-head">
931+
<div class="modal-card-head-content">
932+
<div>
933+
<p class="modal-card-title" id="modalGattiglioEtAl2024bBibtexTitle">
934+
BibTeX entry <code>GattiglioEtAl2024b</code>
935+
</p>
936+
</div>
937+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
938+
aria-hidden="true">&times;</span></button>
939+
</div>
940+
</header>
941+
<section class="modal-card-body">
942+
<pre class="abstract">@unpublished{GattiglioEtAl2024b,
943+
author = {Gattiglio, Guglielmo and Grigoryeva, Lyudmila and Tamborrino, Massimiliano},
944+
howpublished = {arXiv:2411.06225v1 [stat.CO]},
945+
title = {RandNet-Parareal: a time-parallel PDE solver using Random Neural Networks},
946+
url = {http://arxiv.org/abs/2411.06225v1},
947+
year = {2024}
948+
}
949+
</pre>
950+
</section>
951+
</div>
952+
</div>
953+
</div>
954+
</div>
955+
956+
957+
<div class="modal" id="modalGattiglioEtAl2024bAbstract" tabindex="-1" role="dialog"
958+
aria-labelledby="modalGattiglioEtAl2024bAbstractTitle" aria-hidden="true">
959+
<div class="modal-background">
960+
<div class="modal-card">
961+
<div class="modal-content">
962+
<header class="modal-card-head">
963+
<div class="modal-card-head-content">
964+
<div>
965+
<p class="modal-card-title" id="modalGattiglioEtAl2024bAbstractTitle">
966+
Abstract for BibTeX entry <code>GattiglioEtAl2024b</code>
967+
</p>
968+
</div>
969+
<button type="button" class="delete" data-dismiss="modal" aria-label="Close"><span
970+
aria-hidden="true">&times;</span></button>
971+
</div>
972+
</header>
973+
<section class="modal-card-body">
974+
Parallel-in-time (PinT) techniques have been proposed to solve systems of time-dependent differential equations by parallelizing the temporal domain. Among them, Parareal computes the solution sequentially using an inaccurate (fast) solver, and then "corrects" it using an accurate (slow) integrator that runs in parallel across temporal subintervals. This work introduces RandNet-Parareal, a novel method to learn the discrepancy between the coarse and fine solutions using random neural networks (RandNets). RandNet-Parareal achieves speed gains up to x125 and x22 compared to the fine solver run serially and Parareal, respectively. Beyond theoretical guarantees of RandNets as universal approximators, these models are quick to train, allowing the PinT solution of partial differential equations on a spatial mesh of up to 10^5 points with minimal overhead, dramatically increasing the scalability of existing PinT approaches. RandNet-Parareal’s numerical performance is illustrated on systems of real-world significance, such as the viscous Burgers’ equation, the Diffusion-Reaction equation, the two- and three-dimensional Brusselator, and the shallow water equation.
975+
</section>
976+
</div>
977+
</div>
978+
</div>
979+
</div>
980+
886981
</div>
887982
</li>
888983
<li><div class="bibtex-entry-container">

0 commit comments

Comments
 (0)