|
24 | 24 | nslices = int(Tend) # Make sure each time slice has length 1 |
25 | 25 | U_speed = 1.0 |
26 | 26 | nu = 0.0 |
27 | | - ncoarse_v = range(1,11) |
28 | | - nfine = 10 |
29 | | - niter_v = [5, 10, 15] |
| 27 | + ncoarse_v = [1, 2, 4, 5, 10, 15, 20] |
| 28 | + nfine = 20 |
30 | 29 | dx = 1.0 |
31 | | - Nsamples = 60 |
32 | 30 | u0_val = np.array([[1.0]], dtype='complex') |
33 | 31 |
|
34 | | - k_vec = np.linspace(0.0, np.pi, Nsamples+1, endpoint=False) |
| 32 | + Nk = 6 |
| 33 | + k_vec = np.linspace(0, np.pi, Nk+1, endpoint=False) |
35 | 34 | k_vec = k_vec[1:] |
36 | | - waveno = k_vec[-1] |
| 35 | + k_vec = [k_vec[0], k_vec[1], k_vec[-1]] |
37 | 36 |
|
38 | | - svds = np.zeros((1,np.size(ncoarse_v))) |
39 | | - dt_v = np.zeros((1,np.size(ncoarse_v))) |
40 | 37 |
|
41 | | - symb = -(1j*U_speed*waveno + nu*waveno**2) |
42 | | - symb_coarse = symb |
43 | | -# symb_coarse = -(1.0/dx)*(1.0 - np.exp(-1j*waveno*dx)) |
| 38 | + svds = np.zeros((3,np.size(ncoarse_v))) |
| 39 | + dt_v = np.zeros((3,np.size(ncoarse_v))) |
44 | 40 |
|
45 | | - # Solution objects define the problem |
46 | | - u0 = solution_linear(u0_val, np.array([[symb]],dtype='complex')) |
47 | | - ucoarse = solution_linear(u0_val, np.array([[symb_coarse]],dtype='complex')) |
| 41 | + for k in range(3): |
| 42 | + if k==0: |
| 43 | + waveno = k_vec[0] |
| 44 | + elif k==1: |
| 45 | + waveno = k_vec[1] |
| 46 | + else: |
| 47 | + waveno = k_vec[2] |
| 48 | + symb = -(1j*U_speed*waveno + nu*waveno**2) |
| 49 | + symb_coarse = symb |
| 50 | + # symb_coarse = -(1.0/dx)*(1.0 - np.exp(-1j*waveno*dx)) |
48 | 51 |
|
49 | | - for i in range(0,np.size(ncoarse_v)): |
50 | | - para = parareal(0.0, Tend, nslices, intexact, impeuler, nfine, ncoarse_v[i], 0.0, niter_v[2], u0) |
51 | | - dt_v[0,i] = Tend/float(ncoarse_v[i]*nslices) |
52 | | - svds[0,i] = para.get_max_svd(ucoarse=ucoarse) |
| 52 | + # Solution objects define the problem |
| 53 | + u0 = solution_linear(u0_val, np.array([[symb]],dtype='complex')) |
| 54 | + ucoarse = solution_linear(u0_val, np.array([[symb_coarse]],dtype='complex')) |
53 | 55 |
|
54 | | - rcParams['figure.figsize'] = 7.5, 7.5 |
| 56 | + for i in range(0,np.size(ncoarse_v)): |
| 57 | + para = parareal(0.0, Tend, nslices, intexact, impeuler, nfine, ncoarse_v[i], 0.0, 1, u0) |
| 58 | + dt_v[k,i] = Tend/float(ncoarse_v[i]*nslices) |
| 59 | + svds[k,i] = para.get_max_svd(ucoarse=ucoarse) |
| 60 | + |
| 61 | + rcParams['figure.figsize'] = 2.5, 2.5 |
55 | 62 | fs = 8 |
56 | 63 | fig = plt.figure() |
57 | | - plt.plot(dt_v[0,:], svds[0,:]) |
| 64 | + plt.plot(dt_v[0,:], svds[0,:], 'b-o', label=(r"$\kappa$=%4.2f" % k_vec[0]), markersize=fs/2) |
| 65 | + plt.plot(dt_v[1,:], svds[1,:], 'r-s', label=(r"$\kappa$=%4.2f" % k_vec[1]), markersize=fs/2) |
| 66 | + plt.plot(dt_v[2,:], svds[2,:], 'g-x', label=(r"$\kappa$=%4.2f" % k_vec[2]), markersize=fs/2) |
| 67 | + plt.legend(loc='upper left', fontsize=fs, prop={'size':fs-2}, handlelength=3) |
| 68 | + plt.xlabel(r'Coarse time step $\Delta t$', fontsize=fs) |
| 69 | + plt.ylabel(r'Maximum singular value $\sigma$', fontsize=fs) |
| 70 | + filename = 'parareal-sigma-vs-dt.pdf' |
| 71 | + plt.gcf().savefig(filename, bbox_inches='tight') |
| 72 | + call(["pdfcrop", filename, filename]) |
58 | 73 | plt.show() |
0 commit comments