|
| 1 | +import sys |
| 2 | +sys.path.append('../src') |
| 3 | + |
| 4 | +from parareal import parareal |
| 5 | +from impeuler import impeuler |
| 6 | +from intexact import intexact |
| 7 | +from trapezoidal import trapezoidal |
| 8 | +from special_integrator import special_integrator |
| 9 | +from solution_linear import solution_linear |
| 10 | +import numpy as np |
| 11 | +import scipy.sparse as sparse |
| 12 | +import math |
| 13 | + |
| 14 | +from pylab import rcParams |
| 15 | +import matplotlib.pyplot as plt |
| 16 | +from matplotlib.patches import Polygon |
| 17 | +from subprocess import call |
| 18 | +import sympy |
| 19 | +from pylab import rcParams |
| 20 | + |
| 21 | +if __name__ == "__main__": |
| 22 | + |
| 23 | + nslices_v = [2, 4, 8, 16, 32, 64] |
| 24 | + |
| 25 | + U_speed = 1.0 |
| 26 | + nu = 0.0 |
| 27 | + ncoarse = 2 |
| 28 | + nfine = 10 |
| 29 | + niter_v = [5, 10, 15] |
| 30 | + dx = 1.0 |
| 31 | + Nsamples = 60 |
| 32 | + u0_val = np.array([[1.0]], dtype='complex') |
| 33 | + |
| 34 | + k_vec = np.linspace(0.0, np.pi, Nsamples+1, endpoint=False) |
| 35 | + k_vec = k_vec[1:] |
| 36 | + waveno = k_vec[-1] |
| 37 | + |
| 38 | + svds = np.zeros((1, np.size(nslices_v))) |
| 39 | + |
| 40 | + symb = -(1j*U_speed*waveno + nu*waveno**2) |
| 41 | + symb_coarse = symb |
| 42 | +# symb_coarse = -(1.0/dx)*(1.0 - np.exp(-1j*waveno*dx)) |
| 43 | + |
| 44 | + # Solution objects define the problem |
| 45 | + u0 = solution_linear(u0_val, np.array([[symb]],dtype='complex')) |
| 46 | + ucoarse = solution_linear(u0_val, np.array([[symb_coarse]],dtype='complex')) |
| 47 | + |
| 48 | + for i in range(0,np.size(nslices_v)): |
| 49 | + para = parareal(0.0, float(nslices_v[i]), nslices_v[i], intexact, impeuler, nfine, ncoarse, 0.0, niter_v[0], u0) |
| 50 | + svds[0,i] = para.get_max_svd(ucoarse=ucoarse) |
| 51 | + |
| 52 | + rcParams['figure.figsize'] = 7.5, 7.5 |
| 53 | + fs = 8 |
| 54 | + fig = plt.figure() |
| 55 | + plt.plot(nslices_v, svds[0,:], 'b--') |
| 56 | + plt.show() |
0 commit comments