|
23 | 23 | Tend = 16.0 |
24 | 24 | nslices = int(Tend) # Make sure each time slice has length 1 |
25 | 25 | U_speed = 1.0 |
26 | | - nu = 0.0 |
27 | | - ncoarse_v = [1, 2, 4, 5, 10, 15, 20] |
| 26 | + nu = 0.1 |
| 27 | + ncoarse_v = [1, 2, 5, 10, 15, 20] |
28 | 28 | nfine = 20 |
29 | 29 | dx = 1.0 |
30 | 30 | u0_val = np.array([[1.0]], dtype='complex') |
|
37 | 37 |
|
38 | 38 | svds = np.zeros((3,np.size(ncoarse_v))) |
39 | 39 | dt_v = np.zeros((3,np.size(ncoarse_v))) |
| 40 | + speedup = np.zeros((3,np.size(ncoarse_v)-1)) |
| 41 | + tolerance = 1e-2 |
| 42 | + nproc = 16 |
40 | 43 |
|
41 | 44 | for k in range(3): |
42 | 45 | if k==0: |
|
54 | 57 | ucoarse = solution_linear(u0_val, np.array([[symb_coarse]],dtype='complex')) |
55 | 58 |
|
56 | 59 | for i in range(0,np.size(ncoarse_v)): |
57 | | - para = parareal(0.0, Tend, nslices, intexact, impeuler, nfine, ncoarse_v[i], 0.0, 1, u0) |
| 60 | + para = parareal(0.0, Tend, nslices, impeuler, impeuler, nfine, ncoarse_v[i], 0.0, 1, u0) |
58 | 61 | dt_v[k,i] = Tend/float(ncoarse_v[i]*nslices) |
59 | 62 | svds[k,i] = para.get_max_svd(ucoarse=ucoarse) |
60 | | - |
61 | | - rcParams['figure.figsize'] = 2.5, 2.5 |
| 63 | + if i<np.size(ncoarse_v)-1: |
| 64 | + kiter = np.floor( np.log(tolerance)/np.log(svds[k,i]) ) |
| 65 | + coarse_to_fine = float(ncoarse_v[i])/float(nfine) |
| 66 | + speedup[k,i] = 1.0/( (1 + kiter/nproc)*coarse_to_fine + kiter/nproc ) |
| 67 | + |
| 68 | + rcParams['figure.figsize'] = 3.54, 3.54 |
62 | 69 | fs = 8 |
63 | 70 | fig = plt.figure() |
64 | 71 | plt.plot(dt_v[0,:], svds[0,:], 'b-o', label=(r"$\kappa$=%4.2f" % k_vec[0]), markersize=fs/2) |
|
70 | 77 | filename = 'parareal-sigma-vs-dt.pdf' |
71 | 78 | plt.gcf().savefig(filename, bbox_inches='tight') |
72 | 79 | call(["pdfcrop", filename, filename]) |
| 80 | + |
| 81 | + fig = plt.figure() |
| 82 | + plt.plot(dt_v[0,0:np.size(ncoarse_v)-1], speedup[0,:], 'b-o', label=(r"$\kappa$=%4.2f" % k_vec[0]), markersize=fs/2) |
| 83 | + plt.plot(dt_v[1,0:np.size(ncoarse_v)-1], speedup[1,:], 'r-s', label=(r"$\kappa$=%4.2f" % k_vec[1]), markersize=fs/2) |
| 84 | + plt.plot(dt_v[2,0:np.size(ncoarse_v)-1], speedup[2,:], 'g-x', label=(r"$\kappa$=%4.2f" % k_vec[2]), markersize=fs/2) |
| 85 | + plt.legend(loc='upper right', fontsize=fs, prop={'size':fs-2}, handlelength=3) |
| 86 | + plt.xlabel(r'Coarse time step $\Delta t$', fontsize=fs) |
| 87 | + plt.ylabel(r'Project speedup', fontsize=fs) |
| 88 | + filename = 'parareal-speedup-vs-dt.pdf' |
| 89 | + plt.gcf().savefig(filename, bbox_inches='tight') |
| 90 | + call(["pdfcrop", filename, filename]) |
73 | 91 | plt.show() |
0 commit comments