|
| 1 | +import sys |
| 2 | +sys.path.append('../src') |
| 3 | + |
| 4 | +from parareal import parareal |
| 5 | +from impeuler import impeuler |
| 6 | +from intexact import intexact |
| 7 | +from trapezoidal import trapezoidal |
| 8 | +from special_integrator import special_integrator |
| 9 | +from solution_linear import solution_linear |
| 10 | +import numpy as np |
| 11 | +import scipy.sparse as sparse |
| 12 | +import math |
| 13 | + |
| 14 | +from pylab import rcParams |
| 15 | +import matplotlib.pyplot as plt |
| 16 | +from matplotlib.patches import Polygon |
| 17 | +from subprocess import call |
| 18 | +import sympy |
| 19 | +from pylab import rcParams |
| 20 | + |
| 21 | +def solve_omega(R): |
| 22 | + return 1j*( np.log(abs(R)) + 1j*np.angle(R) ) |
| 23 | + |
| 24 | +def findroots(R, n): |
| 25 | + assert abs(n - float(int(n)))<1e-14, "n must be an integer or a float equal to an integer" |
| 26 | + p = np.zeros(int(n)+1, dtype='complex') |
| 27 | + p[-1] = -R |
| 28 | + p[0] = 1.0 |
| 29 | + return np.roots(p) |
| 30 | + |
| 31 | +def normalise(R, T, target): |
| 32 | + roots = findroots(R, T) |
| 33 | + for x in roots: |
| 34 | + assert abs(x**T-R)<1e-5, ("Element in roots not a proper root: err=%5.3e" % abs(x**T-R)) |
| 35 | + minind = np.argmin(abs(np.angle(roots) - target)) |
| 36 | + return roots[minind] |
| 37 | + |
| 38 | +if __name__ == "__main__": |
| 39 | + |
| 40 | + |
| 41 | + Tend = 16.0 |
| 42 | + nslices = int(Tend) # Make sure each time slice has length 1 |
| 43 | + U_speed = 1.0 |
| 44 | + nu = 0.0 |
| 45 | + ncoarse = 5 |
| 46 | + nfine = 10 |
| 47 | + taxis = np.linspace(0.0, Tend, nfine*nslices) |
| 48 | + niter_v = [3] |
| 49 | + |
| 50 | + k_vec = np.linspace(0.0, np.pi, 6, endpoint=False) |
| 51 | + k_vec = k_vec[1:] |
| 52 | + waveno = k_vec[-1] |
| 53 | + |
| 54 | + symb = -(1j*U_speed*waveno + nu*waveno**2) |
| 55 | + symb_coarse = symb |
| 56 | +# symb_coarse = -(1.0/dx)*(1.0 - np.exp(-1j*waveno*dx)) |
| 57 | + |
| 58 | + # Solution objects define the problem |
| 59 | + u0_val = np.array([[1.0]], dtype='complex') |
| 60 | + u0 = solution_linear(u0_val, np.array([[symb]],dtype='complex')) |
| 61 | + ucoarse = solution_linear(u0_val, np.array([[symb_coarse]],dtype='complex')) |
| 62 | + |
| 63 | + para = parareal(0.0, Tend, nslices, intexact, trapezoidal, nfine, ncoarse, 0.0, niter_v[0], u0) |
| 64 | + |
| 65 | + # get update matrix for imp Euler over one slice |
| 66 | + stab_fine = para.timemesh.slices[0].get_fine_update_matrix(u0) |
| 67 | + stab_coarse = para.timemesh.slices[0].get_coarse_update_matrix(ucoarse) |
| 68 | + stab_ex = np.exp(symb) |
| 69 | + |
| 70 | + rcParams['figure.figsize'] = 7.5, 7.5 |
| 71 | + fs = 8 |
| 72 | + fig = plt.figure() |
| 73 | + |
| 74 | + for k in range(0,nslices): |
| 75 | +# for k in range(0,2): |
| 76 | + plt.clf() |
| 77 | + |
| 78 | + stab_para_n0 = para.get_parareal_stab_function(k, ucoarse=ucoarse) |
| 79 | + stab_para_np1 = para.get_parareal_stab_function(k+1, ucoarse=ucoarse) |
| 80 | + |
| 81 | + stab_para_norm_n0 = normalise(stab_para_n0[0,0], Tend, np.angle(stab_ex)) |
| 82 | + stab_para_norm_np1 = normalise(stab_para_np1[0,0], Tend, np.angle(stab_ex)) |
| 83 | + |
| 84 | + sol_fine = solve_omega(stab_fine[0,0]) |
| 85 | + sol_ex = solve_omega(stab_ex) |
| 86 | + sol_coarse = solve_omega(stab_coarse[0,0]) |
| 87 | + sol_para_n0 = solve_omega(stab_para_norm_n0) |
| 88 | + sol_para_np1 = solve_omega(stab_para_norm_np1) |
| 89 | + |
| 90 | + y_fine = np.exp(-1j*sol_fine*taxis) |
| 91 | + y_ex = np.exp(-1j*sol_ex*taxis) |
| 92 | + y_coarse = np.exp(-1j*sol_coarse*taxis) |
| 93 | + y_para_n0 = np.exp(-1j*sol_para_n0*taxis) |
| 94 | + y_para_np1 = np.exp(-1j*sol_para_np1*taxis) |
| 95 | + |
| 96 | + update = y_para_np1 - y_para_n0 |
| 97 | + |
| 98 | + |
| 99 | + plt.plot(taxis, y_fine.real, 'b') |
| 100 | + # plt.plot(taxis, y_ex.real, 'g') |
| 101 | + plt.plot(taxis, y_para_n0.real, 'k') |
| 102 | +# plt.plot(taxis, (y_fine - y_para_n0).real, 'k') |
| 103 | + #plt.plot(taxis, (y_fine - y_coarse).real, 'r') |
| 104 | +# plt.plot(taxis, update.real, 'r') |
| 105 | + plt.ylim([-2, 2]) |
| 106 | + if k<nslices-1: |
| 107 | + plt.show(block=False) |
| 108 | + else: |
| 109 | + plt.show() |
| 110 | + plt.pause(2) |
| 111 | + |
0 commit comments