|
| 1 | +from pySDC import Level as lvl |
| 2 | +from pySDC import Hooks as hookclass |
| 3 | +from pySDC import CollocationClasses as collclass |
| 4 | +from pySDC import Step as stepclass |
| 5 | + |
| 6 | +from pySDC.datatype_classes.complex_mesh import mesh, rhs_imex_mesh |
| 7 | +from pySDC.sweeper_classes.imex_1st_order import imex_1st_order as imex |
| 8 | +from examples.SWFW.ProblemClass import swfw_scalar |
| 9 | +import numpy as np |
| 10 | + |
| 11 | +from matplotlib import pyplot as plt |
| 12 | +from pylab import rcParams |
| 13 | + |
| 14 | +if __name__ == "__main__": |
| 15 | + |
| 16 | + fs = 8 |
| 17 | + |
| 18 | + pparams = {} |
| 19 | + pparams['lambda_s'] = np.array([1.0*1j], dtype='complex') |
| 20 | + pparams['lambda_f'] = np.array([50.0*1j], dtype='complex') |
| 21 | + pparams['u0'] = 1.0 |
| 22 | + swparams = {} |
| 23 | + swparams['collocation_class'] = collclass.CollGaussLobatto |
| 24 | + |
| 25 | + nodes_v = np.arange(2,10) |
| 26 | + specrad = np.zeros((2,np.size(nodes_v))) |
| 27 | + for i in range(0,np.size(nodes_v)): |
| 28 | + swparams['num_nodes'] = nodes_v[i] |
| 29 | + # |
| 30 | + # ...this is functionality copied from test_imexsweeper. Ideally, it should be available in one place. |
| 31 | + # |
| 32 | + step = stepclass.step(params={}) |
| 33 | + L = lvl.level(problem_class=swfw_scalar, problem_params=pparams, dtype_u=mesh, dtype_f=rhs_imex_mesh, sweeper_class=imex, sweeper_params=swparams, level_params={}, hook_class=hookclass.hooks, id="stability") |
| 34 | + step.register_level(L) |
| 35 | + step.status.dt = 1.0 |
| 36 | + step.status.time = 0.0 |
| 37 | + u0 = step.levels[0].prob.u_exact(step.status.time) |
| 38 | + step.init_step(u0) |
| 39 | + nnodes = step.levels[0].sweep.coll.num_nodes |
| 40 | + level = step.levels[0] |
| 41 | + problem = level.prob |
| 42 | + QE = level.sweep.QE[1:,1:] |
| 43 | + QI = level.sweep.QI[1:,1:] |
| 44 | + Q = level.sweep.coll.Qmat[1:,1:] |
| 45 | + |
| 46 | + dt = step.status.dt |
| 47 | + LHS = np.eye(nnodes) - step.status.dt*( problem.lambda_f[0]*QI + problem.lambda_s[0]*QE ) |
| 48 | + RHS = step.status.dt*( (problem.lambda_f[0]+problem.lambda_s[0])*Q - (problem.lambda_f[0]*QI + problem.lambda_s[0]*QE) ) |
| 49 | + evals, evecs = np.linalg.eig( np.linalg.inv(LHS).dot(RHS) ) |
| 50 | + specrad[1,i] = np.linalg.norm( evals, np.inf ) |
| 51 | + |
| 52 | + if swparams['collocation_class']==collclass.CollGaussLobatto: |
| 53 | + # For Lobatto nodes, first column and row are all zeros, since q_1 = q_0; hence remove them |
| 54 | + QI = QI[1:,1:] |
| 55 | + Q = Q[1:,1:] |
| 56 | + # Eigenvalue of error propagation matrix in stiff limit: E = I - inv(QI)*Q |
| 57 | + evals, evecs = np.linalg.eig( np.eye(nnodes-1) - np.linalg.inv(QI).dot(Q) ) |
| 58 | + specrad[0,i] = np.linalg.norm( evals, np.inf ) |
| 59 | + |
| 60 | + ### Plot result |
| 61 | + rcParams['figure.figsize'] = 2.5, 2.5 |
| 62 | + fig = plt.figure() |
| 63 | + plt.plot(nodes_v, specrad[0,:], 'rd-', markersize=fs-2, label=r'$\lambda_{\rm fast} = \infty$') |
| 64 | + plt.plot(nodes_v, specrad[1,:], 'bo-', markersize=fs-2, label=r'$\lambda_{\rm fast} = %2.0f i$' % problem.lambda_f[0].imag) |
| 65 | + plt.xlabel(r'Number of nodes $M$', fontsize=fs) |
| 66 | + plt.ylabel(r'Spectral radius $\sigma\left( \mathbf{E} \right)$', fontsize=fs, labelpad=2) |
| 67 | + plt.legend(loc='lower right', fontsize=fs, prop={'size':fs}) |
| 68 | + plt.xlim([np.min(nodes_v), np.max(nodes_v)]) |
| 69 | + plt.ylim([0, 1.0]) |
| 70 | + plt.yticks(fontsize=fs) |
| 71 | + plt.xticks(fontsize=fs) |
| 72 | + #plt.show() |
| 73 | + fig.savefig('sdc_fwsw_stifflimit_specrad.pdf',bbox_inches='tight') |
| 74 | + |
0 commit comments