|
| 1 | +import numpy as np |
| 2 | +import scipy.sparse as sp |
| 3 | + |
| 4 | + |
| 5 | +def get_FFT_matrix(N): |
| 6 | + """ |
| 7 | + Get matrix for computing FFT of size N. Normalization is like "ortho" in numpy. |
| 8 | + Compute inverse FFT by multiplying by the complex conjugate (numpy.conjugate) of this matrix |
| 9 | +
|
| 10 | + Args: |
| 11 | + N (int): Size of the data to be transformed |
| 12 | +
|
| 13 | + Returns: |
| 14 | + numpy.ndarray: Dense square matrix to compute forward transform |
| 15 | + """ |
| 16 | + idx_1d = np.arange(N, dtype=complex) |
| 17 | + i1, i2 = np.meshgrid(idx_1d, idx_1d) |
| 18 | + |
| 19 | + return np.exp(-2 * np.pi * 1j * i1 * i2 / N) / np.sqrt(N) |
| 20 | + |
| 21 | + |
| 22 | +def get_E_matrix(N, alpha=0): |
| 23 | + """ |
| 24 | + Get NxN matrix with -1 on the lower subdiagonal, -alpha in the top right and 0 elsewhere |
| 25 | +
|
| 26 | + Args: |
| 27 | + N (int): Size of the matrix |
| 28 | + alpha (float): Negative of value in the top right |
| 29 | +
|
| 30 | + Returns: |
| 31 | + sparse E matrix |
| 32 | + """ |
| 33 | + E = sp.diags( |
| 34 | + [ |
| 35 | + -1.0, |
| 36 | + ] |
| 37 | + * (N - 1), |
| 38 | + offsets=-1, |
| 39 | + ).tolil() |
| 40 | + E[0, -1] = -alpha |
| 41 | + return E |
| 42 | + |
| 43 | + |
| 44 | +def get_J_matrix(N, alpha): |
| 45 | + """ |
| 46 | + Get matrix for weights in the weighted inverse FFT |
| 47 | +
|
| 48 | + Args: |
| 49 | + N (int): Size of the matrix |
| 50 | + alpha (float): alpha parameter in ParaDiag |
| 51 | +
|
| 52 | + Returns: |
| 53 | + sparse J matrix |
| 54 | + """ |
| 55 | + gamma = alpha ** (-np.arange(N) / N) |
| 56 | + return sp.diags(gamma) |
| 57 | + |
| 58 | + |
| 59 | +def get_J_inv_matrix(N, alpha): |
| 60 | + """ |
| 61 | + Get matrix for weights in the weighted FFT |
| 62 | +
|
| 63 | + Args: |
| 64 | + N (int): Size of the matrix |
| 65 | + alpha (float): alpha parameter in ParaDiag |
| 66 | +
|
| 67 | + Returns: |
| 68 | + sparse J_inv matrix |
| 69 | + """ |
| 70 | + gamma = alpha ** (-np.arange(N) / N) |
| 71 | + return sp.diags(1 / gamma) |
| 72 | + |
| 73 | + |
| 74 | +def get_weighted_FFT_matrix(N, alpha): |
| 75 | + """ |
| 76 | + Get matrix for the weighted FFT |
| 77 | +
|
| 78 | + Args: |
| 79 | + N (int): Size of the matrix |
| 80 | + alpha (float): alpha parameter in ParaDiag |
| 81 | +
|
| 82 | + Returns: |
| 83 | + Dense weighted FFT matrix |
| 84 | + """ |
| 85 | + return get_FFT_matrix(N) @ get_J_inv_matrix(N, alpha) |
| 86 | + |
| 87 | + |
| 88 | +def get_weighted_iFFT_matrix(N, alpha): |
| 89 | + """ |
| 90 | + Get matrix for the weighted inverse FFT |
| 91 | +
|
| 92 | + Args: |
| 93 | + N (int): Size of the matrix |
| 94 | + alpha (float): alpha parameter in ParaDiag |
| 95 | +
|
| 96 | + Returns: |
| 97 | + Dense weighted FFT matrix |
| 98 | + """ |
| 99 | + return get_J_matrix(N, alpha) @ np.conjugate(get_FFT_matrix(N)) |
| 100 | + |
| 101 | + |
| 102 | +def get_H_matrix(N, sweeper_params): |
| 103 | + """ |
| 104 | + Get sparse matrix for computing the collocation update. Requires not to do a collocation update! |
| 105 | +
|
| 106 | + Args: |
| 107 | + N (int): Number of collocation nodes |
| 108 | + sweeper_params (dict): Parameters for the sweeper |
| 109 | +
|
| 110 | + Returns: |
| 111 | + Sparse matrix for collocation update |
| 112 | + """ |
| 113 | + assert sweeper_params['quad_type'] == 'RADAU-RIGHT' |
| 114 | + H = sp.eye(N).tolil() * 0 |
| 115 | + H[:, -1] = 1 |
| 116 | + return H |
| 117 | + |
| 118 | + |
| 119 | +def get_G_inv_matrix(l, L, alpha, sweeper_params): |
| 120 | + M = sweeper_params['num_nodes'] |
| 121 | + I_M = sp.eye(M) |
| 122 | + E_alpha = get_E_matrix(L, alpha) |
| 123 | + H = get_H_matrix(M, sweeper_params) |
| 124 | + |
| 125 | + gamma = alpha ** (-np.arange(L) / L) |
| 126 | + diags = np.fft.fft(1 / gamma * E_alpha[:, 0].toarray().flatten(), norm='backward') |
| 127 | + G = (diags[l] * H + I_M).tocsc() |
| 128 | + if M > 1: |
| 129 | + return sp.linalg.inv(G).toarray() |
| 130 | + else: |
| 131 | + return 1 / G.toarray() |
0 commit comments