|
| 1 | +import numpy as np |
| 2 | +import dill |
| 3 | +from pathlib import Path |
| 4 | + |
| 5 | +from pySDC.helpers.stats_helper import get_sorted |
| 6 | +from pySDC.core.Collocation import CollBase as Collocation |
| 7 | +from pySDC.implementations.problem_classes.Battery import battery_n_capacitors |
| 8 | +from pySDC.implementations.sweeper_classes.imex_1st_order import imex_1st_order |
| 9 | +from pySDC.implementations.controller_classes.controller_nonMPI import controller_nonMPI |
| 10 | +from pySDC.projects.PinTSimE.battery_model import ( |
| 11 | + controller_run, |
| 12 | + generate_description, |
| 13 | + get_recomputed, |
| 14 | + log_data, |
| 15 | + proof_assertions_description, |
| 16 | +) |
| 17 | +from pySDC.projects.PinTSimE.piline_model import setup_mpl |
| 18 | +import pySDC.helpers.plot_helper as plt_helper |
| 19 | +from pySDC.core.Hooks import hooks |
| 20 | + |
| 21 | +from pySDC.projects.PinTSimE.switch_estimator import SwitchEstimator |
| 22 | + |
| 23 | + |
| 24 | +def run(): |
| 25 | + """ |
| 26 | + Executes the simulation for the battery model using the IMEX sweeper and plot the results |
| 27 | + as <problem_class>_model_solution_<sweeper_class>.png |
| 28 | + """ |
| 29 | + |
| 30 | + dt = 1e-2 |
| 31 | + t0 = 0.0 |
| 32 | + Tend = 3.5 |
| 33 | + |
| 34 | + problem_classes = [battery_n_capacitors] |
| 35 | + sweeper_classes = [imex_1st_order] |
| 36 | + |
| 37 | + ncapacitors = 2 |
| 38 | + alpha = 5.0 |
| 39 | + V_ref = np.array([1.0, 1.0]) |
| 40 | + C = np.array([1.0, 1.0]) |
| 41 | + |
| 42 | + recomputed = False |
| 43 | + use_switch_estimator = [True] |
| 44 | + |
| 45 | + for problem, sweeper in zip(problem_classes, sweeper_classes): |
| 46 | + for use_SE in use_switch_estimator: |
| 47 | + description, controller_params = generate_description( |
| 48 | + dt, problem, sweeper, log_data, False, use_SE, ncapacitors, alpha, V_ref, C |
| 49 | + ) |
| 50 | + |
| 51 | + # Assertions |
| 52 | + proof_assertions_description(description, False, use_SE) |
| 53 | + |
| 54 | + proof_assertions_time(dt, Tend, V_ref, alpha) |
| 55 | + |
| 56 | + stats = controller_run(description, controller_params, False, use_SE, t0, Tend) |
| 57 | + |
| 58 | + check_solution(stats, dt, use_SE) |
| 59 | + |
| 60 | + plot_voltages(description, problem.__name__, sweeper.__name__, recomputed, use_SE, False) |
| 61 | + |
| 62 | + |
| 63 | +def plot_voltages(description, problem, sweeper, recomputed, use_switch_estimator, use_adaptivity, cwd='./'): |
| 64 | + """ |
| 65 | + Routine to plot the numerical solution of the model |
| 66 | +
|
| 67 | + Args: |
| 68 | + description(dict): contains all information for a controller run |
| 69 | + problem (pySDC.core.Problem.ptype): problem class that wants to be simulated |
| 70 | + sweeper (pySDC.core.Sweeper.sweeper): sweeper class for solving the problem class numerically |
| 71 | + recomputed (bool): flag if the values after a restart are used or before |
| 72 | + use_switch_estimator (bool): flag if the switch estimator wants to be used or not |
| 73 | + use_adaptivity (bool): flag if adaptivity wants to be used or not |
| 74 | + cwd (str): current working directory |
| 75 | + """ |
| 76 | + |
| 77 | + f = open(cwd + 'data/{}_{}_USE{}_USA{}.dat'.format(problem, sweeper, use_switch_estimator, use_adaptivity), 'rb') |
| 78 | + stats = dill.load(f) |
| 79 | + f.close() |
| 80 | + |
| 81 | + # convert filtered statistics to list of iterations count, sorted by process |
| 82 | + cL = np.array([me[1][0] for me in get_sorted(stats, type='u', recomputed=recomputed)]) |
| 83 | + vC1 = np.array([me[1][1] for me in get_sorted(stats, type='u', recomputed=recomputed)]) |
| 84 | + vC2 = np.array([me[1][2] for me in get_sorted(stats, type='u', recomputed=recomputed)]) |
| 85 | + |
| 86 | + t = np.array([me[0] for me in get_sorted(stats, type='u', recomputed=recomputed)]) |
| 87 | + |
| 88 | + setup_mpl() |
| 89 | + fig, ax = plt_helper.plt.subplots(1, 1, figsize=(4.5, 3)) |
| 90 | + ax.plot(t, cL, label='$i_L$') |
| 91 | + ax.plot(t, vC1, label='$v_{C_1}$') |
| 92 | + ax.plot(t, vC2, label='$v_{C_2}$') |
| 93 | + |
| 94 | + if use_switch_estimator: |
| 95 | + switches = get_recomputed(stats, type='switch', sortby='time') |
| 96 | + if recomputed is not None: |
| 97 | + assert len(switches) >= 2, f"Expected at least 2 switches, got {len(switches)}!" |
| 98 | + t_switches = [v[1] for v in switches] |
| 99 | + |
| 100 | + for i in range(len(t_switches)): |
| 101 | + ax.axvline(x=t_switches[i], linestyle='--', color='k', label='Switch {}'.format(i + 1)) |
| 102 | + |
| 103 | + ax.legend(frameon=False, fontsize=12, loc='upper right') |
| 104 | + |
| 105 | + ax.set_xlabel('Time') |
| 106 | + ax.set_ylabel('Energy') |
| 107 | + |
| 108 | + fig.savefig('data/battery_2capacitors_model_solution.png', dpi=300, bbox_inches='tight') |
| 109 | + plt_helper.plt.close(fig) |
| 110 | + |
| 111 | + |
| 112 | +def check_solution(stats, dt, use_switch_estimator): |
| 113 | + """ |
| 114 | + Function that checks the solution based on a hardcoded reference solution. Based on check_solution function from @brownbaerchen. |
| 115 | +
|
| 116 | + Args: |
| 117 | + stats (dict): Raw statistics from a controller run |
| 118 | + dt (float): initial time step |
| 119 | + use_switch_estimator (bool): flag if the switch estimator wants to be used or not |
| 120 | + """ |
| 121 | + |
| 122 | + data = get_data_dict(stats, use_switch_estimator) |
| 123 | + |
| 124 | + if use_switch_estimator: |
| 125 | + msg = f'Error when using the switch estimator for battery_2condensators for dt={dt:.1e}:' |
| 126 | + if dt == 1e-2: |
| 127 | + expected = { |
| 128 | + 'cL': 1.2065280755094876, |
| 129 | + 'vC1': 1.0094825899806945, |
| 130 | + 'vC2': 1.0050052828742688, |
| 131 | + 'switch1': 1.6094379124373626, |
| 132 | + 'switch2': 3.209437912457051, |
| 133 | + 'restarts': 2.0, |
| 134 | + 'sum_niters': 1568, |
| 135 | + } |
| 136 | + elif dt == 4e-1: |
| 137 | + expected = { |
| 138 | + 'cL': 1.1842780233981391, |
| 139 | + 'vC1': 1.0094891393319418, |
| 140 | + 'vC2': 1.00103823232433, |
| 141 | + 'switch1': 1.6075867934844466, |
| 142 | + 'switch2': 3.209437912436633, |
| 143 | + 'restarts': 2.0, |
| 144 | + 'sum_niters': 2000, |
| 145 | + } |
| 146 | + elif dt == 4e-2: |
| 147 | + expected = { |
| 148 | + 'cL': 1.180493652021971, |
| 149 | + 'vC1': 1.0094825917376264, |
| 150 | + 'vC2': 1.0007713468084405, |
| 151 | + 'switch1': 1.6094074085553605, |
| 152 | + 'switch2': 3.209437912440314, |
| 153 | + 'restarts': 2.0, |
| 154 | + 'sum_niters': 2364, |
| 155 | + } |
| 156 | + elif dt == 4e-3: |
| 157 | + expected = { |
| 158 | + 'cL': 1.1537529501025199, |
| 159 | + 'vC1': 1.001438946726028, |
| 160 | + 'vC2': 1.0004331625246141, |
| 161 | + 'switch1': 1.6093728710270467, |
| 162 | + 'switch2': 3.217437912434171, |
| 163 | + 'restarts': 2.0, |
| 164 | + 'sum_niters': 8920, |
| 165 | + } |
| 166 | + |
| 167 | + got = { |
| 168 | + 'cL': data['cL'][-1], |
| 169 | + 'vC1': data['vC1'][-1], |
| 170 | + 'vC2': data['vC2'][-1], |
| 171 | + 'switch1': data['switch1'], |
| 172 | + 'switch2': data['switch2'], |
| 173 | + 'restarts': data['restarts'], |
| 174 | + 'sum_niters': data['sum_niters'], |
| 175 | + } |
| 176 | + |
| 177 | + for key in expected.keys(): |
| 178 | + assert np.isclose( |
| 179 | + expected[key], got[key], rtol=1e-4 |
| 180 | + ), f'{msg} Expected {key}={expected[key]:.4e}, got {key}={got[key]:.4e}' |
| 181 | + |
| 182 | + |
| 183 | +def get_data_dict(stats, use_switch_estimator, recomputed=False): |
| 184 | + """ |
| 185 | + Converts the statistics in a useful data dictionary so that it can be easily checked in the check_solution function. |
| 186 | + Based on @brownbaerchen's get_data function. |
| 187 | +
|
| 188 | + Args: |
| 189 | + stats (dict): Raw statistics from a controller run |
| 190 | + use_switch_estimator (bool): flag if the switch estimator wants to be used or not |
| 191 | + recomputed (bool): flag if the values after a restart are used or before |
| 192 | +
|
| 193 | + Return: |
| 194 | + data (dict): contains all information as the statistics dict |
| 195 | + """ |
| 196 | + |
| 197 | + data = dict() |
| 198 | + data['cL'] = np.array([me[1][0] for me in get_sorted(stats, type='u', recomputed=False, sortby='time')]) |
| 199 | + data['vC1'] = np.array([me[1][1] for me in get_sorted(stats, type='u', recomputed=False, sortby='time')]) |
| 200 | + data['vC2'] = np.array([me[1][2] for me in get_sorted(stats, type='u', recomputed=False, sortby='time')]) |
| 201 | + data['switch1'] = np.array(get_recomputed(stats, type='switch', sortby='time'))[0, 1] |
| 202 | + data['switch2'] = np.array(get_recomputed(stats, type='switch', sortby='time'))[-1, 1] |
| 203 | + data['restarts'] = np.sum(np.array(get_sorted(stats, type='restart', recomputed=None, sortby='time'))[:, 1]) |
| 204 | + data['sum_niters'] = np.sum(np.array(get_sorted(stats, type='niter', recomputed=None, sortby='time'))[:, 1]) |
| 205 | + |
| 206 | + return data |
| 207 | + |
| 208 | + |
| 209 | +def proof_assertions_time(dt, Tend, V_ref, alpha): |
| 210 | + """ |
| 211 | + Function to proof the assertions regarding the time domain (in combination with the specific problem): |
| 212 | +
|
| 213 | + Args: |
| 214 | + dt (float): time step for computation |
| 215 | + Tend (float): end time |
| 216 | + V_ref (np.ndarray): Reference values (problem parameter) |
| 217 | + alpha (np.float): Multiple used for initial conditions (problem_parameter) |
| 218 | + """ |
| 219 | + |
| 220 | + assert ( |
| 221 | + Tend == 3.5 and V_ref[0] == 1.0 and V_ref[1] == 1.0 and alpha == 5.0 |
| 222 | + ), "Error! Do not use other parameters for V_ref[:] != 1.0, alpha != 1.2, Tend != 0.3 due to hardcoded reference!" |
| 223 | + |
| 224 | + assert ( |
| 225 | + dt == 1e-2 or dt == 4e-1 or dt == 4e-2 or dt == 4e-3 |
| 226 | + ), "Error! Do not use other time steps dt != 4e-1 or dt != 4e-2 or dt != 4e-3 due to hardcoded references!" |
| 227 | + |
| 228 | + |
| 229 | +if __name__ == "__main__": |
| 230 | + run() |
0 commit comments