|
| 1 | +from mpi4py import MPI |
| 2 | + |
| 3 | +from pySDC.core.Errors import UnlockError |
| 4 | +from pySDC.core.BaseTransfer import base_transfer |
| 5 | + |
| 6 | + |
| 7 | +class base_transfer_MPI(base_transfer): |
| 8 | + """ |
| 9 | + Standard base_transfer class |
| 10 | +
|
| 11 | + Attributes: |
| 12 | + logger: custom logger for sweeper-related logging |
| 13 | + params(__Pars): parameter object containing the custom parameters passed by the user |
| 14 | + fine (pySDC.Level.level): reference to the fine level |
| 15 | + coarse (pySDC.Level.level): reference to the coarse level |
| 16 | + """ |
| 17 | + |
| 18 | + def __init__(self, *args, **kwargs): |
| 19 | + super().__init__(*args, **kwargs) |
| 20 | + self.comm_fine = self.fine.sweep.comm |
| 21 | + self.comm_coarse = self.coarse.sweep.comm |
| 22 | + |
| 23 | + if ( |
| 24 | + self.comm_fine.size != self.fine.sweep.coll.num_nodes |
| 25 | + or self.comm_coarse.size != self.coarse.sweep.coll.num_nodes |
| 26 | + ): |
| 27 | + raise NotImplementedError( |
| 28 | + f'{type(self).__name__} only works when each rank administers one collocation node so far!' |
| 29 | + ) |
| 30 | + |
| 31 | + def restrict(self): |
| 32 | + """ |
| 33 | + Space-time restriction routine |
| 34 | +
|
| 35 | + The routine applies the spatial restriction operator to the fine values on the fine nodes, then reevaluates f |
| 36 | + on the coarse level. This is used for the first part of the FAS correction tau via integration. The second part |
| 37 | + is the integral over the fine values, restricted to the coarse level. Finally, possible tau corrections on the |
| 38 | + fine level are restricted as well. |
| 39 | + """ |
| 40 | + |
| 41 | + F, G = self.fine, self.coarse |
| 42 | + CF, CG = self.comm_fine, self.comm_coarse |
| 43 | + SG = G.sweep |
| 44 | + PG = G.prob |
| 45 | + |
| 46 | + # only if the level is unlocked at least by prediction |
| 47 | + if not F.status.unlocked: |
| 48 | + raise UnlockError('fine level is still locked, cannot use data from there') |
| 49 | + |
| 50 | + # restrict fine values in space |
| 51 | + tmp_u = self.space_transfer.restrict(F.u[CF.rank + 1]) |
| 52 | + |
| 53 | + # restrict collocation values |
| 54 | + G.u[0] = self.space_transfer.restrict(F.u[0]) |
| 55 | + recvBuf = [None for _ in range(SG.coll.num_nodes)] |
| 56 | + recvBuf[CG.rank] = PG.u_init |
| 57 | + for n in range(SG.coll.num_nodes): |
| 58 | + CF.Reduce(self.Rcoll[n, CF.rank] * tmp_u, recvBuf[CG.rank], root=n, op=MPI.SUM) |
| 59 | + G.u[CG.rank + 1] = recvBuf[CG.rank] |
| 60 | + |
| 61 | + # re-evaluate f on coarse level |
| 62 | + G.f[0] = PG.eval_f(G.u[0], G.time) |
| 63 | + G.f[CG.rank + 1] = PG.eval_f(G.u[CG.rank + 1], G.time + G.dt * SG.coll.nodes[CG.rank]) |
| 64 | + |
| 65 | + # build coarse level tau correction part |
| 66 | + tauG = G.sweep.integrate() |
| 67 | + |
| 68 | + # build fine level tau correction part |
| 69 | + tauF = F.sweep.integrate() |
| 70 | + |
| 71 | + # restrict fine level tau correction part in space |
| 72 | + tmp_tau = self.space_transfer.restrict(tauF) |
| 73 | + |
| 74 | + # restrict fine level tau correction part in collocation |
| 75 | + tauFG = tmp_tau.copy() |
| 76 | + for n in range(SG.coll.num_nodes): |
| 77 | + recvBuf = tauFG if n == CG.rank else None |
| 78 | + CF.Reduce(self.Rcoll[n, CF.rank] * tmp_tau, recvBuf, root=n, op=MPI.SUM) |
| 79 | + |
| 80 | + # build tau correction |
| 81 | + G.tau[CG.rank] = tauFG - tauG |
| 82 | + |
| 83 | + if F.tau[CF.rank] is not None: |
| 84 | + tmp_tau = self.space_transfer.restrict(F.tau[CF.rank]) |
| 85 | + |
| 86 | + # restrict possible tau correction from fine in collocation |
| 87 | + recvBuf = [None for _ in range(SG.coll.num_nodes)] |
| 88 | + recvBuf[CG.rank] = PG.u_init |
| 89 | + for n in range(SG.coll.num_nodes): |
| 90 | + CF.Reduce(self.Rcoll[n, CF.rank] * tmp_tau, recvBuf[CG.rank], root=n, op=MPI.SUM) |
| 91 | + G.tau[CG.rank] += recvBuf[CG.rank] |
| 92 | + else: |
| 93 | + pass |
| 94 | + |
| 95 | + # save u and rhs evaluations for interpolation |
| 96 | + G.uold[CG.rank + 1] = PG.dtype_u(G.u[CG.rank + 1]) |
| 97 | + G.fold[CG.rank + 1] = PG.dtype_f(G.f[CG.rank + 1]) |
| 98 | + |
| 99 | + # works as a predictor |
| 100 | + G.status.unlocked = True |
| 101 | + |
| 102 | + return None |
| 103 | + |
| 104 | + def prolong(self): |
| 105 | + """ |
| 106 | + Space-time prolongation routine |
| 107 | +
|
| 108 | + This routine applies the spatial prolongation routine to the difference between the computed and the restricted |
| 109 | + values on the coarse level and then adds this difference to the fine values as coarse correction. |
| 110 | + """ |
| 111 | + |
| 112 | + # get data for easier access |
| 113 | + F, G = self.fine, self.coarse |
| 114 | + CF, CG = self.comm_fine, self.comm_coarse |
| 115 | + SF = F.sweep |
| 116 | + PF = F.prob |
| 117 | + |
| 118 | + # only of the level is unlocked at least by prediction or restriction |
| 119 | + if not G.status.unlocked: |
| 120 | + raise UnlockError('coarse level is still locked, cannot use data from there') |
| 121 | + |
| 122 | + # build coarse correction |
| 123 | + |
| 124 | + # interpolate values in space first |
| 125 | + tmp_u = self.space_transfer.prolong(G.u[CF.rank + 1] - G.uold[CF.rank + 1]) |
| 126 | + |
| 127 | + # interpolate values in collocation |
| 128 | + recvBuf = [None for _ in range(SF.coll.num_nodes)] |
| 129 | + recvBuf[CF.rank] = F.u[CF.rank + 1].copy() |
| 130 | + for n in range(SF.coll.num_nodes): |
| 131 | + |
| 132 | + CG.Reduce(self.Pcoll[n, CG.rank] * tmp_u, recvBuf[n], root=n, op=MPI.SUM) |
| 133 | + F.u[CF.rank + 1] += recvBuf[CF.rank] |
| 134 | + |
| 135 | + # re-evaluate f on fine level |
| 136 | + F.f[CF.rank + 1] = PF.eval_f(F.u[CF.rank + 1], F.time + F.dt * SF.coll.nodes[CF.rank]) |
| 137 | + |
| 138 | + return None |
| 139 | + |
| 140 | + def prolong_f(self): |
| 141 | + """ |
| 142 | + Space-time prolongation routine w.r.t. the rhs f |
| 143 | +
|
| 144 | + This routine applies the spatial prolongation routine to the difference between the computed and the restricted |
| 145 | + values on the coarse level and then adds this difference to the fine values as coarse correction. |
| 146 | + """ |
| 147 | + |
| 148 | + # get data for easier access |
| 149 | + F, G = self.fine, self.coarse |
| 150 | + CF, CG = self.comm_fine, self.comm_coarse |
| 151 | + SF = F.sweep |
| 152 | + |
| 153 | + # only of the level is unlocked at least by prediction or restriction |
| 154 | + if not G.status.unlocked: |
| 155 | + raise UnlockError('coarse level is still locked, cannot use data from there') |
| 156 | + |
| 157 | + # build coarse correction |
| 158 | + |
| 159 | + # interpolate values in space first |
| 160 | + tmp_u = self.space_transfer.prolong(G.u[CF.rank + 1] - G.uold[CF.rank + 1]) |
| 161 | + tmp_f = self.space_transfer.prolong(G.f[CF.rank + 1] - G.fold[CF.rank + 1]) |
| 162 | + |
| 163 | + # interpolate values in collocation |
| 164 | + recvBuf_u = [None for _ in range(SF.coll.num_nodes)] |
| 165 | + recvBuf_f = [None for _ in range(SF.coll.num_nodes)] |
| 166 | + recvBuf_u[CF.rank] = F.u[CF.rank + 1].copy() |
| 167 | + recvBuf_f[CF.rank] = F.f[CF.rank + 1].copy() |
| 168 | + for n in range(SF.coll.num_nodes): |
| 169 | + |
| 170 | + CG.Reduce(self.Pcoll[n, CG.rank] * tmp_u, recvBuf_u[CF.rank], root=n, op=MPI.SUM) |
| 171 | + CG.Reduce(self.Pcoll[n, CG.rank] * tmp_f, recvBuf_f[CF.rank], root=n, op=MPI.SUM) |
| 172 | + |
| 173 | + F.u[CF.rank + 1] += recvBuf_u[CF.rank] |
| 174 | + F.f[CF.rank + 1] += recvBuf_f[CF.rank] |
| 175 | + |
| 176 | + return None |
0 commit comments