|
1 | 1 | import numpy as np |
2 | 2 | from matplotlib import pyplot as plt |
| 3 | +from pylab import rcParams |
3 | 4 |
|
4 | | -fs = 18 |
| 5 | +fs = 8 |
5 | 6 | order = np.array([]) |
6 | 7 | nsteps = np.array([]) |
7 | 8 | error = np.array([]) |
|
34 | 35 | convline[ii,jj] = error_plot[ii,0]*(float(nsteps_plot[ii,0])/float(nsteps_plot[ii,jj]))**order_plot[ii] |
35 | 36 |
|
36 | 37 | color = [ 'r', 'b', 'g' ] |
37 | | -fig = plt.figure(figsize=(8,8)) |
| 38 | +shape = ['o', 'd', 's'] |
| 39 | +rcParams['figure.figsize'] = 2.5, 2.5 |
| 40 | +fig = plt.figure() |
38 | 41 | for ii in range(0,3): |
39 | | - plt.loglog(nsteps_plot[ii,:], error_plot[ii,:], 'o', markersize=12, color=color[ii], label='p='+str(int(order_plot[ii]))) |
| 42 | + plt.loglog(nsteps_plot[ii,:], error_plot[ii,:], shape[ii], markersize=fs, color=color[ii], label='p='+str(int(order_plot[ii]))) |
40 | 43 | plt.loglog(nsteps_plot[ii,:], convline[ii,:], '-', color=color[ii]) |
41 | 44 |
|
42 | | -plt.legend() |
43 | | -plt.xlabel(r'Number of time step $N_t$') |
44 | | -plt.ylabel('Relative error') |
| 45 | +plt.legend(loc='upper right', fontsize=fs, prop={'size':fs}) |
| 46 | +plt.xlabel(r'Number of time step $N_t$', fontsize=fs) |
| 47 | +plt.ylabel('Relative error', fontsize=fs, labelpad=2) |
45 | 48 | plt.xlim([0.9*np.min(nsteps_plot), 1.1*np.max(nsteps_plot)]) |
| 49 | +plt.ylim([1e-7, 1e1]) |
| 50 | +plt.yticks(fontsize=fs) |
| 51 | +plt.xticks(fontsize=fs) |
46 | 52 | plt.show() |
47 | 53 | fig.savefig('sdc_fwsw_convergence.pdf',bbox_inches='tight') |
48 | 54 |
|
0 commit comments