|
| 1 | + |
| 2 | +import numpy as np |
| 3 | +import scipy.sparse as sp |
| 4 | +from scipy.sparse.linalg import spsolve |
| 5 | + |
| 6 | +from pySDC.core.Errors import ParameterError, ProblemError |
| 7 | +from pySDC.core.Problem import ptype |
| 8 | +from pySDC.implementations.datatype_classes.mesh import mesh |
| 9 | + |
| 10 | + |
| 11 | +# noinspection PyUnusedLocal |
| 12 | +class allencahn_front(ptype): |
| 13 | + """ |
| 14 | + Example implementing the Allen-Cahn equation in 1D with finite differences and inhomogeneous Dirichlet-BC, |
| 15 | + with driving force, 0-1 formulation (Bayreuth example) |
| 16 | +
|
| 17 | + Attributes: |
| 18 | + A: second-order FD discretization of the 1D laplace operator |
| 19 | + dx: distance between two spatial nodes |
| 20 | + """ |
| 21 | + |
| 22 | + def __init__(self, problem_params, dtype_u=mesh, dtype_f=mesh): |
| 23 | + """ |
| 24 | + Initialization routine |
| 25 | +
|
| 26 | + Args: |
| 27 | + problem_params (dict): custom parameters for the example |
| 28 | + dtype_u: mesh data type (will be passed parent class) |
| 29 | + dtype_f: mesh data type (will be passed parent class) |
| 30 | + """ |
| 31 | + |
| 32 | + # these parameters will be used later, so assert their existence |
| 33 | + essential_keys = ['nvars', 'dw', 'eps', 'newton_maxiter', 'newton_tol', 'interval'] |
| 34 | + for key in essential_keys: |
| 35 | + if key not in problem_params: |
| 36 | + msg = 'need %s to instantiate problem, only got %s' % (key, str(problem_params.keys())) |
| 37 | + raise ParameterError(msg) |
| 38 | + |
| 39 | + # we assert that nvars looks very particular here.. this will be necessary for coarsening in space later on |
| 40 | + if (problem_params['nvars'] + 1) % 2 != 0: |
| 41 | + raise ProblemError('setup requires nvars = 2^p - 1') |
| 42 | + |
| 43 | + if 'stop_at_nan' not in problem_params: |
| 44 | + problem_params['stop_at_nan'] = True |
| 45 | + |
| 46 | + # invoke super init, passing number of dofs, dtype_u and dtype_f |
| 47 | + super(allencahn_front, self).__init__(problem_params['nvars'], dtype_u, dtype_f, problem_params) |
| 48 | + |
| 49 | + # compute dx and get discretization matrix A |
| 50 | + self.dx = (self.params.interval[1] - self.params.interval[0]) / (self.params.nvars + 1) |
| 51 | + self.xvalues = np.array([(i + 1 - (self.params.nvars + 1) / 2) * self.dx for i in range(self.params.nvars)]) |
| 52 | + |
| 53 | + self.A = self.__get_A(self.params.nvars, self.dx) |
| 54 | + self.uext = self.dtype_u(self.init + 2, val=0.0) |
| 55 | + |
| 56 | + self.newton_itercount = 0 |
| 57 | + self.lin_itercount = 0 |
| 58 | + self.newton_ncalls = 0 |
| 59 | + self.lin_ncalls = 0 |
| 60 | + |
| 61 | + @staticmethod |
| 62 | + def __get_A(N, dx): |
| 63 | + """ |
| 64 | + Helper function to assemble FD matrix A in sparse format |
| 65 | +
|
| 66 | + Args: |
| 67 | + N (int): number of dofs |
| 68 | + dx (float): distance between two spatial nodes |
| 69 | +
|
| 70 | + Returns: |
| 71 | + scipy.sparse.csc_matrix: matrix A in CSC format |
| 72 | + """ |
| 73 | + |
| 74 | + stencil = [1, -2, 1] |
| 75 | + A = sp.diags(stencil, [-1, 0, 1], shape=(N + 2, N + 2), format='lil') |
| 76 | + A *= 1.0 / (dx ** 2) |
| 77 | + |
| 78 | + return A |
| 79 | + |
| 80 | + def solve_system(self, rhs, factor, u0, t): |
| 81 | + """ |
| 82 | + Simple Newton solver |
| 83 | +
|
| 84 | + Args: |
| 85 | + rhs (dtype_f): right-hand side for the nonlinear system |
| 86 | + factor (float): abbrev. for the node-to-node stepsize (or any other factor required) |
| 87 | + u0 (dtype_u): initial guess for the iterative solver |
| 88 | + t (float): current time (required here for the BC) |
| 89 | +
|
| 90 | + Returns: |
| 91 | + dtype_u: solution u |
| 92 | + """ |
| 93 | + |
| 94 | + u = self.dtype_u(u0).values |
| 95 | + z = self.dtype_u(self.init, val=0.0).values |
| 96 | + eps2 = self.params.eps ** 2 |
| 97 | + dw = self.params.dw |
| 98 | + |
| 99 | + Id = sp.eye(self.params.nvars) |
| 100 | + |
| 101 | + v = 3.0 * np.sqrt(2) * self.params.eps * self.params.dw |
| 102 | + self.uext.values[0] = 0.5 * (1 + np.tanh((self.params.interval[0] - v * t) / (np.sqrt(2) * self.params.eps))) |
| 103 | + self.uext.values[-1] = 0.5 * (1 + np.tanh((self.params.interval[1] - v * t) / (np.sqrt(2) * self.params.eps))) |
| 104 | + |
| 105 | + A = self.A[1:-1, 1:-1] |
| 106 | + # start newton iteration |
| 107 | + n = 0 |
| 108 | + res = 99 |
| 109 | + while n < self.params.newton_maxiter: |
| 110 | + # print(n) |
| 111 | + # form the function g with g(u) = 0 |
| 112 | + self.uext.values[1:-1] = u[:] |
| 113 | + g = u - rhs.values \ |
| 114 | + - factor * (self.A.dot(self.uext.values)[1:-1] - 2.0 / eps2 * u * (1.0 - u) * (1.0 - 2.0 * u) - |
| 115 | + 6.0 * dw * u * (1.0 - u)) |
| 116 | + |
| 117 | + # if g is close to 0, then we are done |
| 118 | + res = np.linalg.norm(g, np.inf) |
| 119 | + |
| 120 | + if res < self.params.newton_tol: |
| 121 | + break |
| 122 | + |
| 123 | + # assemble dg |
| 124 | + dg = Id - factor * (A - 2.0 / eps2 * sp.diags( |
| 125 | + (1.0 - u) * (1.0 - 2.0 * u) - u * ((1.0 - 2.0 * u) + 2.0 * (1.0 - u)), offsets=0) - 6.0 * dw * sp.diags( |
| 126 | + (1.0 - u) - u, offsets=0)) |
| 127 | + |
| 128 | + # newton update: u1 = u0 - g/dg |
| 129 | + u -= spsolve(dg, g) |
| 130 | + # u -= gmres(dg, g, x0=z, tol=self.params.lin_tol)[0] |
| 131 | + # increase iteration count |
| 132 | + n += 1 |
| 133 | + |
| 134 | + if np.isnan(res) and self.params.stop_at_nan: |
| 135 | + raise ProblemError('Newton got nan after %i iterations, aborting...' % n) |
| 136 | + elif np.isnan(res): |
| 137 | + self.logger.warning('Newton got nan after %i iterations...' % n) |
| 138 | + |
| 139 | + if n == self.params.newton_maxiter: |
| 140 | + self.logger.warning('Newton did not converge after %i iterations, error is %s' % (n, res)) |
| 141 | + |
| 142 | + self.newton_ncalls += 1 |
| 143 | + self.newton_itercount += n |
| 144 | + |
| 145 | + me = self.dtype_u(self.init) |
| 146 | + me.values = u |
| 147 | + |
| 148 | + return me |
| 149 | + |
| 150 | + def eval_f(self, u, t): |
| 151 | + """ |
| 152 | + Routine to evaluate the RHS |
| 153 | +
|
| 154 | + Args: |
| 155 | + u (dtype_u): current values |
| 156 | + t (float): current time |
| 157 | +
|
| 158 | + Returns: |
| 159 | + dtype_f: the RHS |
| 160 | + """ |
| 161 | + # set up boundary values to embed inner points |
| 162 | + v = 3.0 * np.sqrt(2) * self.params.eps * self.params.dw |
| 163 | + self.uext.values[0] = 0.5 * (1 + np.tanh((self.params.interval[0] - v * t) / (np.sqrt(2) * self.params.eps))) |
| 164 | + self.uext.values[-1] = 0.5 * (1 + np.tanh((self.params.interval[1] - v * t) / (np.sqrt(2) * self.params.eps))) |
| 165 | + |
| 166 | + self.uext.values[1:-1] = u.values[:] |
| 167 | + |
| 168 | + f = self.dtype_f(self.init) |
| 169 | + f.values = self.A.dot(self.uext.values)[1:-1] - \ |
| 170 | + 2.0 / self.params.eps ** 2 * u.values * (1.0 - u.values) * (1.0 - 2 * u.values) - \ |
| 171 | + 6.0 * self.params.dw * u.values * (1.0 - u.values) |
| 172 | + return f |
| 173 | + |
| 174 | + def u_exact(self, t): |
| 175 | + """ |
| 176 | + Routine to compute the exact solution at time t |
| 177 | +
|
| 178 | + Args: |
| 179 | + t (float): current time |
| 180 | +
|
| 181 | + Returns: |
| 182 | + dtype_u: exact solution |
| 183 | + """ |
| 184 | + |
| 185 | + v = 3.0 * np.sqrt(2) * self.params.eps * self.params.dw |
| 186 | + me = self.dtype_u(self.init, val=0.0) |
| 187 | + me.values = 0.5 * (1 + np.tanh((self.xvalues - v * t) / (np.sqrt(2) * self.params.eps))) |
| 188 | + return me |
| 189 | + |
| 190 | + |
| 191 | +# noinspection PyUnusedLocal |
| 192 | +class allencahn_front_finel(allencahn_front): |
| 193 | + """ |
| 194 | + Example implementing the Allen-Cahn equation in 1D with finite differences and inhomogeneous Dirichlet-BC, |
| 195 | + with driving force, 0-1 formulation (Bayreuth example), Finel's trick/parametrization |
| 196 | +
|
| 197 | + Attributes: |
| 198 | + A: second-order FD discretization of the 1D laplace operator |
| 199 | + dx: distance between two spatial nodes |
| 200 | + """ |
| 201 | + |
| 202 | + # noinspection PyTypeChecker |
| 203 | + def solve_system(self, rhs, factor, u0, t): |
| 204 | + """ |
| 205 | + Simple Newton solver |
| 206 | +
|
| 207 | + Args: |
| 208 | + rhs (dtype_f): right-hand side for the nonlinear system |
| 209 | + factor (float): abbrev. for the node-to-node stepsize (or any other factor required) |
| 210 | + u0 (dtype_u): initial guess for the iterative solver |
| 211 | + t (float): current time (required here for the BC) |
| 212 | +
|
| 213 | + Returns: |
| 214 | + dtype_u: solution u |
| 215 | + """ |
| 216 | + |
| 217 | + u = self.dtype_u(u0).values |
| 218 | + z = self.dtype_u(self.init, val=0.0).values |
| 219 | + eps2 = self.params.eps ** 2 |
| 220 | + dw = self.params.dw |
| 221 | + a2 = np.tanh(self.dx / (np.sqrt(2) * self.params.eps)) ** 2 |
| 222 | + |
| 223 | + Id = sp.eye(self.params.nvars) |
| 224 | + |
| 225 | + v = 3.0 * np.sqrt(2) * self.params.eps * self.params.dw |
| 226 | + self.uext.values[0] = 0.5 * (1 + np.tanh((self.params.interval[0] - v * t) / (np.sqrt(2) * self.params.eps))) |
| 227 | + self.uext.values[-1] = 0.5 * (1 + np.tanh((self.params.interval[1] - v * t) / (np.sqrt(2) * self.params.eps))) |
| 228 | + |
| 229 | + A = self.A[1:-1, 1:-1] |
| 230 | + # start newton iteration |
| 231 | + n = 0 |
| 232 | + res = 99 |
| 233 | + while n < self.params.newton_maxiter: |
| 234 | + # print(n) |
| 235 | + # form the function g with g(u) = 0 |
| 236 | + self.uext.values[1:-1] = u[:] |
| 237 | + gprim = 1.0 / self.dx ** 2 * ((1.0 - a2) / (1.0 - a2 * (2.0 * u - 1.0) ** 2) - 1.0) * (2.0 * u - 1.0) |
| 238 | + g = u - rhs.values - factor * (self.A.dot(self.uext.values)[1:-1] - 1.0 * gprim - 6.0 * dw * u * (1.0 - u)) |
| 239 | + |
| 240 | + # if g is close to 0, then we are done |
| 241 | + res = np.linalg.norm(g, np.inf) |
| 242 | + |
| 243 | + if res < self.params.newton_tol: |
| 244 | + break |
| 245 | + |
| 246 | + # assemble dg |
| 247 | + dgprim = 1.0 / self.dx ** 2 * \ |
| 248 | + (2.0 * ((1.0 - a2) / (1.0 - a2 * (2.0 * u - 1.0) ** 2) - 1.0) + |
| 249 | + (2.0 * u - 1) ** 2 * (1.0 - a2) * 4 * a2 / (1.0 - a2 * (2.0 * u - 1.0) ** 2) ** 2) |
| 250 | + |
| 251 | + dg = Id - factor * (A - 1.0 * sp.diags(dgprim, offsets=0) - 6.0 * dw * sp.diags((1.0 - u) - u, offsets=0)) |
| 252 | + |
| 253 | + # newton update: u1 = u0 - g/dg |
| 254 | + u -= spsolve(dg, g) |
| 255 | + # For some reason, doing cg or gmres does not work so well here... |
| 256 | + # u -= cg(dg, g, x0=z, tol=self.params.lin_tol)[0] |
| 257 | + # increase iteration count |
| 258 | + n += 1 |
| 259 | + |
| 260 | + if np.isnan(res) and self.params.stop_at_nan: |
| 261 | + raise ProblemError('Newton got nan after %i iterations, aborting...' % n) |
| 262 | + elif np.isnan(res): |
| 263 | + self.logger.warning('Newton got nan after %i iterations...' % n) |
| 264 | + |
| 265 | + if n == self.params.newton_maxiter: |
| 266 | + self.logger.warning('Newton did not converge after %i iterations, error is %s' % (n, res)) |
| 267 | + |
| 268 | + self.newton_ncalls += 1 |
| 269 | + self.newton_itercount += n |
| 270 | + |
| 271 | + me = self.dtype_u(self.init) |
| 272 | + me.values = u |
| 273 | + |
| 274 | + return me |
| 275 | + |
| 276 | + def eval_f(self, u, t): |
| 277 | + """ |
| 278 | + Routine to evaluate the RHS |
| 279 | +
|
| 280 | + Args: |
| 281 | + u (dtype_u): current values |
| 282 | + t (float): current time |
| 283 | +
|
| 284 | + Returns: |
| 285 | + dtype_f: the RHS |
| 286 | + """ |
| 287 | + # set up boundary values to embed inner points |
| 288 | + v = 3.0 * np.sqrt(2) * self.params.eps * self.params.dw |
| 289 | + self.uext.values[0] = 0.5 * (1 + np.tanh((self.params.interval[0] - v * t) / (np.sqrt(2) * self.params.eps))) |
| 290 | + self.uext.values[-1] = 0.5 * (1 + np.tanh((self.params.interval[1] - v * t) / (np.sqrt(2) * self.params.eps))) |
| 291 | + |
| 292 | + self.uext.values[1:-1] = u.values[:] |
| 293 | + |
| 294 | + a2 = np.tanh(self.dx / (np.sqrt(2) * self.params.eps)) ** 2 |
| 295 | + gprim = 1.0 / self.dx ** 2 * ((1.0 - a2) / (1.0 - a2 * (2.0 * u.values - 1.0) ** 2) - 1) \ |
| 296 | + * (2.0 * u.values - 1.0) |
| 297 | + f = self.dtype_f(self.init) |
| 298 | + f.values = self.A.dot(self.uext.values)[1:-1] - 1.0 * gprim - 6.0 * self.params.dw * u.values * (1.0 - u.values) |
| 299 | + return f |
0 commit comments