11import matplotlib
2+
23matplotlib .use ('Agg' )
34
45import pickle
@@ -63,25 +64,18 @@ def main():
6364 Tend = 0.1
6465
6566 sweeper_list = [generic_implicit , linearized_implicit_fixed_parallel , linearized_implicit_fixed_parallel_prec ]
66- dt_list = [Tend / 2 ** i for i in range (1 ,5 )]
67+ dt_list = [Tend / 2 ** i for i in range (1 , 5 )]
6768
6869 results = dict ()
6970 results ['sweeper_list' ] = [sweeper .__name__ for sweeper in sweeper_list ]
7071 results ['dt_list' ] = dt_list
7172
72- # f = open('parallelSDC_nonlinear_out.txt', 'w')
73- # uinit = None
74- # uex = None
75- # uend = None
76- # P = None
77-
7873 # loop over the different sweepers and check results
7974 for sweeper in sweeper_list :
8075 description ['sweeper_class' ] = sweeper
8176 error_reduction = []
8277 for dt in dt_list :
83-
84- print ('Working with sweeper %s and dt = %s...' % (sweeper .__name__ ,dt ))
78+ print ('Working with sweeper %s and dt = %s...' % (sweeper .__name__ , dt ))
8579
8680 level_params ['dt' ] = dt
8781 description ['level_params' ] = level_params
@@ -104,7 +98,7 @@ def main():
10498 filtered_stats = filter_stats (stats , type = 'error_post_iteration' )
10599 error_post = sort_stats (filtered_stats , sortby = 'iter' )[0 ][1 ]
106100
107- error_reduction .append (error_post / error_pre )
101+ error_reduction .append (error_post / error_pre )
108102
109103 print ('error and reduction rate at time %s: %6.4e -- %6.4e' % (Tend , error_post , error_reduction [- 1 ]))
110104
@@ -155,25 +149,20 @@ def plot_graphs():
155149 plt .figure ()
156150 plt .xlabel ('dt' )
157151 plt .ylabel ('error reduction' )
158- # plt.xlim((interval[0] - 0.01, interval[1] + 0.01))
159- # plt.ylim((-0.1, 1.1))
160152 plt .grid ()
161153
162- # compute values for x-axis and plot
163-
164154 for sweeper , color , marker , label in setups :
165-
166155 plt .loglog (dt_list , results [sweeper ], lw = 3 , ls = '-' , color = color , marker = marker , markersize = 10 , label = label )
167156
168- plt .loglog (dt_list , [dt * 2 for dt in dt_list ], lw = 2 , ls = '--' , color = 'k' , label = 'linear' )
169- plt .loglog (dt_list , [dt * dt / dt_list [0 ]* 2 for dt in dt_list ], lw = 2 , ls = '-.' , color = 'k' , label = 'quadratic' )
157+ plt .loglog (dt_list , [dt * 2 for dt in dt_list ], lw = 2 , ls = '--' , color = 'k' , label = 'linear' )
158+ plt .loglog (dt_list , [dt * dt / dt_list [0 ] * 2 for dt in dt_list ], lw = 2 , ls = '-.' , color = 'k' , label = 'quadratic' )
170159
171160 plt .legend (loc = 1 , ncol = 1 , numpoints = 1 )
172161
173162 plt .gca ().invert_xaxis ()
174- plt .xlim ([dt_list [0 ]* 1.1 , dt_list [- 1 ]/ 1.1 ])
175- plt .ylim ([4E-03 ,1E0 ])
176- plt .xticks (dt_list ,dt_list )
163+ plt .xlim ([dt_list [0 ] * 1.1 , dt_list [- 1 ] / 1.1 ])
164+ plt .ylim ([4E-03 , 1E0 ])
165+ plt .xticks (dt_list , dt_list )
177166
178167 # plt.show()
179168
0 commit comments