|
| 1 | +from pySDC import Level as lvl |
| 2 | +from pySDC import Hooks as hookclass |
| 3 | +from pySDC import CollocationClasses as collclass |
| 4 | +from pySDC import Step as stepclass |
| 5 | + |
| 6 | +from pySDC.datatype_classes.complex_mesh import mesh, rhs_imex_mesh |
| 7 | +from pySDC.sweeper_classes.imex_1st_order import imex_1st_order as imex |
| 8 | +from standard_integrators import dirk |
| 9 | +# for simplicity, import the scalar problem to generate Q matrices |
| 10 | +from examples.fwsw.ProblemClass import swfw_scalar |
| 11 | +import numpy as np |
| 12 | +import scipy.linalg as la |
| 13 | +import scipy.optimize as opt |
| 14 | +import sympy |
| 15 | + |
| 16 | +from pylab import rcParams |
| 17 | +import matplotlib.pyplot as plt |
| 18 | +from subprocess import call |
| 19 | + |
| 20 | +def findomega(stab_fh): |
| 21 | + assert np.array_equal(np.shape(stab_fh),[2,2]), 'Not 2x2 matrix...' |
| 22 | + omega = sympy.Symbol('omega') |
| 23 | + func = (sympy.exp(-1j*omega)-stab_fh[0,0])*(sympy.exp(-1j*omega)-stab_fh[1,1])-stab_fh[0,1]*stab_fh[1,0] |
| 24 | + solsym = sympy.solve(func, omega) |
| 25 | + sol0 = complex(solsym[0]) |
| 26 | + sol1 = complex(solsym[1]) |
| 27 | + if sol0.real>=0: |
| 28 | + sol = sol0 |
| 29 | + elif sol1.real>=0: |
| 30 | + sol = sol1 |
| 31 | + else: |
| 32 | + print "Two roots with real part of same sign..." |
| 33 | + return sol |
| 34 | + |
| 35 | +if __name__ == "__main__": |
| 36 | + |
| 37 | + pparams = {} |
| 38 | + # the following are not used in the computation |
| 39 | + pparams['lambda_s'] = np.array([0.0]) |
| 40 | + pparams['lambda_f'] = np.array([0.0]) |
| 41 | + pparams['u0'] = 1.0 |
| 42 | + swparams = {} |
| 43 | + swparams['collocation_class'] = collclass.CollGaussLegendre |
| 44 | + swparams['num_nodes'] = 2 |
| 45 | + K = 2 |
| 46 | + dirk_order = K |
| 47 | + |
| 48 | + c_speed = 1.0 |
| 49 | + U_speed = 0.05 |
| 50 | + |
| 51 | + # |
| 52 | + # ...this is functionality copied from test_imexsweeper. Ideally, it should be available in one place. |
| 53 | + # |
| 54 | + step = stepclass.step(params={}) |
| 55 | + L = lvl.level(problem_class=swfw_scalar, problem_params=pparams, dtype_u=mesh, dtype_f=rhs_imex_mesh, sweeper_class=imex, sweeper_params=swparams, level_params={}, hook_class=hookclass.hooks, id="stability") |
| 56 | + step.register_level(L) |
| 57 | + step.status.dt = 1.0 # can't use different value |
| 58 | + step.status.time = 0.0 |
| 59 | + u0 = step.levels[0].prob.u_exact(step.status.time) |
| 60 | + step.init_step(u0) |
| 61 | + nnodes = step.levels[0].sweep.coll.num_nodes |
| 62 | + level = step.levels[0] |
| 63 | + problem = level.prob |
| 64 | + |
| 65 | + QE = level.sweep.QE[1:,1:] |
| 66 | + QI = level.sweep.QI[1:,1:] |
| 67 | + Q = level.sweep.coll.Qmat[1:,1:] |
| 68 | + Nsamples = 30 |
| 69 | + k_vec = np.linspace(0, np.pi, Nsamples+1, endpoint=False) |
| 70 | + k_vec = k_vec[1:] |
| 71 | + phase = np.zeros((2,Nsamples)) |
| 72 | + amp_factor = np.zeros((2,Nsamples)) |
| 73 | + for i in range(0,np.size(k_vec)): |
| 74 | + Cs = -1j*k_vec[i]*np.array([[0.0, c_speed],[c_speed, 0.0]], dtype='complex') |
| 75 | + Uadv = -1j*k_vec[i]*np.array([[U_speed, 0.0], [0.0, U_speed]], dtype='complex') |
| 76 | + |
| 77 | + LHS = np.eye(2*nnodes) - step.status.dt*( np.kron(QI,Cs) + np.kron(QE,Uadv) ) |
| 78 | + RHS = step.status.dt*( np.kron(Q, Uadv+Cs) - np.kron(QI,Cs) - np.kron(QE,Uadv) ) |
| 79 | + |
| 80 | + LHSinv = np.linalg.inv(LHS) |
| 81 | + Mat_sweep = np.linalg.matrix_power(LHSinv.dot(RHS), K) |
| 82 | + for k in range(0,K): |
| 83 | + Mat_sweep = Mat_sweep + np.linalg.matrix_power(LHSinv.dot(RHS),k).dot(LHSinv) |
| 84 | + ## |
| 85 | + # ---> The update formula for this case need verification!! |
| 86 | + update = step.status.dt*np.kron( level.sweep.coll.weights, Uadv+Cs ) |
| 87 | + |
| 88 | + y1 = np.array([1,0]) |
| 89 | + y2 = np.array([0,1]) |
| 90 | + e1 = np.kron( np.ones(nnodes), y1 ) |
| 91 | + stab_fh_1 = y1 + update.dot( Mat_sweep.dot(e1) ) |
| 92 | + e2 = np.kron( np.ones(nnodes), y2 ) |
| 93 | + stab_fh_2 = y2 + update.dot(Mat_sweep.dot(e2)) |
| 94 | + stab_sdc = np.column_stack((stab_fh_1, stab_fh_2)) |
| 95 | + |
| 96 | + # Stability function of backward Euler is 1/(1-z); system is y' = (Cs+Uadv)*y |
| 97 | + #stab_ie = np.linalg.inv( np.eye(2) - step.status.dt*(Cs+Uadv) ) |
| 98 | + |
| 99 | + # For testing, insert exact stability function exp(-dt*i*k*(Cs+Uadv) |
| 100 | + #stab_fh = la.expm(Cs+Uadv) |
| 101 | + |
| 102 | + dirkts = dirk(Cs+Uadv, dirk_order) |
| 103 | + stab_fh1 = dirkts.timestep(y1, 1.0) |
| 104 | + stab_fh2 = dirkts.timestep(y2, 1.0) |
| 105 | + stab_dirk = np.column_stack((stab_fh1, stab_fh2)) |
| 106 | + |
| 107 | + sol_sdc = findomega(stab_sdc) |
| 108 | + sol_dirk = findomega(stab_dirk) |
| 109 | + |
| 110 | + # Now solve for discrete phase |
| 111 | + phase[0,i] = sol_sdc.real |
| 112 | + amp_factor[0,i] = np.exp(sol_sdc.imag) |
| 113 | + phase[1,i] = sol_dirk.real |
| 114 | + amp_factor[1,i] = np.exp(sol_dirk.imag) |
| 115 | + ### |
| 116 | + rcParams['figure.figsize'] = 2.5, 2.5 |
| 117 | + fs = 8 |
| 118 | + fig = plt.figure() |
| 119 | + plt.plot(k_vec, k_vec*(U_speed+c_speed), '--', color='k', linewidth=1.5, label='Exact') |
| 120 | + plt.plot(k_vec, phase[0,:], '-', color='b', linewidth=1.5, label='SDC('+str(K)+')') |
| 121 | + plt.plot(k_vec, phase[1,:], '-', color='g', linewidth=1.5, label='DIRK('+str(dirkts.order)+')') |
| 122 | + plt.xlabel('Wave number', fontsize=fs) |
| 123 | + plt.ylabel('Phase speed', fontsize=fs) |
| 124 | + plt.xlim([k_vec[0], k_vec[-1:]]) |
| 125 | + plt.ylim([k_vec[0], k_vec[-1:]]) |
| 126 | + fig.gca().tick_params(axis='both', labelsize=fs) |
| 127 | + plt.legend(loc='upper left', fontsize=fs, prop={'size':fs}) |
| 128 | + #plt.show() |
| 129 | + filename = 'sdc-fwsw-disprel-phase-K'+str(K)+'-M'+str(swparams['num_nodes'])+'.pdf' |
| 130 | + plt.gcf().savefig(filename, bbox_inches='tight') |
| 131 | + call(["pdfcrop", filename, filename]) |
| 132 | + |
| 133 | + fig = plt.figure() |
| 134 | + plt.plot(k_vec, 1.0+np.zeros(np.size(k_vec)), '--', color='k', linewidth=1.5, label='Exact') |
| 135 | + plt.plot(k_vec, amp_factor[0,:], '-', color='b', linewidth=1.5, label='SDC('+str(K)+')') |
| 136 | + plt.plot(k_vec, amp_factor[1,:], '-', color='g', linewidth=1.5, label='DIRK('+str(dirkts.order)+')') |
| 137 | + plt.xlabel('Wave number', fontsize=fs) |
| 138 | + plt.ylabel('Amplification factor', fontsize=fs) |
| 139 | + fig.gca().tick_params(axis='both', labelsize=fs) |
| 140 | + plt.xlim([k_vec[0], k_vec[-1:]]) |
| 141 | + plt.ylim([k_vec[0], k_vec[-1:]]) |
| 142 | + plt.legend(loc='lower left', fontsize=fs, prop={'size':fs}) |
| 143 | + plt.gca().set_ylim([0.0, 1.1]) |
| 144 | + #plt.show() |
| 145 | + filename = 'sdc-fwsw-disprel-ampfac-K'+str(K)+'-M'+str(swparams['num_nodes'])+'.pdf' |
| 146 | + plt.gcf().savefig(filename, bbox_inches='tight') |
| 147 | + call(["pdfcrop", filename, filename]) |
| 148 | + |
0 commit comments