|
| 1 | +import numpy as np |
| 2 | +import math |
| 3 | +import scipy.sparse.linalg as LA |
| 4 | +import scipy.sparse as sp |
| 5 | +from ProblemClass import Callback, logging |
| 6 | +# |
| 7 | +# Trapezoidal rule |
| 8 | +# |
| 9 | +class trapezoidal: |
| 10 | + |
| 11 | + def __init__(self, M, alpha=0.5): |
| 12 | + assert np.shape(M)[0]==np.shape(M)[1], "Matrix M must be quadratic" |
| 13 | + self.Ndof = np.shape(M)[0] |
| 14 | + self.M = M |
| 15 | + self.alpha = alpha |
| 16 | + |
| 17 | + def timestep(self, u0, dt): |
| 18 | + M_trap = sp.eye(self.Ndof) - self.alpha*dt*self.M |
| 19 | + B_trap = sp.eye(self.Ndof) + (1.0-self.alpha)*dt*self.M |
| 20 | + b = B_trap.dot(u0) |
| 21 | + return LA.spsolve(M_trap, b) |
| 22 | +# |
| 23 | +# A BDF-2 implicit two-step method |
| 24 | +# |
| 25 | +class bdf2: |
| 26 | + |
| 27 | + def __init__(self, M): |
| 28 | + assert np.shape(M)[0]==np.shape(M)[1], "Matrix M must be quadratic" |
| 29 | + self.Ndof = np.shape(M)[0] |
| 30 | + self.M = M |
| 31 | + |
| 32 | + def firsttimestep(self, u0, dt): |
| 33 | + b = u0 |
| 34 | + L = sp.eye(self.Ndof) - dt*self.M |
| 35 | + return LA.spsolve(L, b) |
| 36 | + |
| 37 | + def timestep(self, u0, um1, dt): |
| 38 | + b = (4.0/3.0)*u0 - (1.0/3.0)*um1 |
| 39 | + L = sp.eye(self.Ndof) - (2.0/3.0)*dt*self.M |
| 40 | + return LA.spsolve(L, b) |
| 41 | +# |
| 42 | +# A diagonally implicit Runge-Kutta method of order 2, 3 or 4 |
| 43 | +# |
| 44 | +class dirk: |
| 45 | + |
| 46 | + def __init__(self, M, order, gmres_maxiter, gmres_restart, gmres_tol): |
| 47 | + |
| 48 | + assert np.shape(M)[0]==np.shape(M)[1], "Matrix M must be quadratic" |
| 49 | + self.Ndof = np.shape(M)[0] |
| 50 | + self.M = M |
| 51 | + self.order = order |
| 52 | + self.logger = logging() |
| 53 | + self.gmres_maxiter = gmres_maxiter |
| 54 | + self.gmres_restart = gmres_restart |
| 55 | + self.gmres_tol = gmres_tol |
| 56 | + |
| 57 | + assert self.order in [2,22,3,4], 'Order must be 2,22,3,4' |
| 58 | + |
| 59 | + if (self.order==2): |
| 60 | + self.nstages = 1 |
| 61 | + self.A = np.zeros((1,1)) |
| 62 | + self.A[0,0] = 0.5 |
| 63 | + self.tau = [0.5] |
| 64 | + self.b = [1.0] |
| 65 | + |
| 66 | + if (self.order==22): |
| 67 | + self.nstages = 2 |
| 68 | + self.A = np.zeros((2,2)) |
| 69 | + self.A[0,0] = 1.0/3.0 |
| 70 | + self.A[1,0] = 1.0/2.0 |
| 71 | + self.A[1,1] = 1.0/2.0 |
| 72 | + |
| 73 | + self.tau = np.zeros(2) |
| 74 | + self.tau[0] = 1.0/3.0 |
| 75 | + self.tau[1] = 1.0 |
| 76 | + |
| 77 | + self.b = np.zeros(2) |
| 78 | + self.b[0] = 3.0/4.0 |
| 79 | + self.b[1] = 1.0/4.0 |
| 80 | + |
| 81 | + |
| 82 | + if (self.order==3): |
| 83 | + self.nstages = 2 |
| 84 | + self.A = np.zeros((2,2)) |
| 85 | + self.A[0,0] = 0.5 + 1.0/( 2.0*math.sqrt(3.0) ) |
| 86 | + self.A[1,0] = -1.0/math.sqrt(3.0) |
| 87 | + self.A[1,1] = self.A[0,0] |
| 88 | + |
| 89 | + self.tau = np.zeros(2) |
| 90 | + self.tau[0] = 0.5 + 1.0/( 2.0*math.sqrt(3.0) ) |
| 91 | + self.tau[1] = 0.5 - 1.0/( 2.0*math.sqrt(3.0) ) |
| 92 | + |
| 93 | + self.b = np.zeros(2) |
| 94 | + self.b[0] = 0.5 |
| 95 | + self.b[1] = 0.5 |
| 96 | + |
| 97 | + if (self.order==4): |
| 98 | + self.nstages = 3 |
| 99 | + alpha = 2.0*math.cos(math.pi/18.0)/math.sqrt(3.0) |
| 100 | + |
| 101 | + self.A = np.zeros((3,3)) |
| 102 | + self.A[0,0] = (1.0 + alpha)/2.0 |
| 103 | + self.A[1,0] = -alpha/2.0 |
| 104 | + self.A[1,1] = self.A[0,0] |
| 105 | + self.A[2,0] = (1.0 + alpha) |
| 106 | + self.A[2,1] = -(1.0 + 2.0*alpha) |
| 107 | + self.A[2,2] = self.A[0,0] |
| 108 | + |
| 109 | + self.tau = np.zeros(3) |
| 110 | + self.tau[0] = (1.0 + alpha)/2.0 |
| 111 | + self.tau[1] = 1.0/2.0 |
| 112 | + self.tau[2] = (1.0 - alpha)/2.0 |
| 113 | + |
| 114 | + self.b = np.zeros(3) |
| 115 | + self.b[0] = 1.0/(6.0*alpha*alpha) |
| 116 | + self.b[1] = 1.0 - 1.0/(3.0*alpha*alpha) |
| 117 | + self.b[2] = 1.0/(6.0*alpha*alpha) |
| 118 | + |
| 119 | + self.stages = np.zeros((self.nstages,self.Ndof)) |
| 120 | + |
| 121 | + def timestep(self, u0, dt): |
| 122 | + |
| 123 | + uend = u0 |
| 124 | + for i in range(0,self.nstages): |
| 125 | + |
| 126 | + b = u0 |
| 127 | + |
| 128 | + # Compute right hand side for this stage's implicit step |
| 129 | + for j in range(0,i): |
| 130 | + b = b + self.A[i,j]*dt*self.f(self.stages[j,:]) |
| 131 | + |
| 132 | + # Implicit solve for current stage |
| 133 | + #if i==0: |
| 134 | + self.stages[i,:] = self.f_solve( b, dt*self.A[i,i] , u0 ) |
| 135 | + #else: |
| 136 | + # self.stages[i,:] = self.f_solve( b, dt*self.A[i,i] , self.stages[i-1,:] ) |
| 137 | + |
| 138 | + # Add contribution of current stage to final value |
| 139 | + uend = uend + self.b[i]*dt*self.f(self.stages[i,:]) |
| 140 | + |
| 141 | + return uend |
| 142 | + |
| 143 | + # |
| 144 | + # Returns f(u) = c*u |
| 145 | + # |
| 146 | + def f(self,u): |
| 147 | + return self.M.dot(u) |
| 148 | + |
| 149 | + |
| 150 | + # |
| 151 | + # Solves (Id - alpha*c)*u = b for u |
| 152 | + # |
| 153 | + def f_solve(self, b, alpha, u0): |
| 154 | + cb = Callback() |
| 155 | + L = sp.eye(self.Ndof) - alpha*self.M |
| 156 | + sol, info = LA.gmres( L, b, x0=u0, tol=self.gmres_tol, restart=self.gmres_restart, maxiter=self.gmres_maxiter, callback=cb) |
| 157 | + if alpha!=0.0: |
| 158 | + print "DIRK: Number of GMRES iterations: %3i --- Final residual: %6.3e" % ( cb.getcounter(), cb.getresidual() ) |
| 159 | + self.logger.add(cb.getcounter()) |
| 160 | + return sol |
0 commit comments