diff --git a/modules/data.atmosphere/DESCRIPTION b/modules/data.atmosphere/DESCRIPTION index b3283ef3844..ac65b18a556 100644 --- a/modules/data.atmosphere/DESCRIPTION +++ b/modules/data.atmosphere/DESCRIPTION @@ -1,7 +1,7 @@ Package: PEcAn.data.atmosphere Type: Package Title: PEcAn Functions Used for Managing Climate Driver Data -Version: 1.9.1 +Version: 1.9.1.9000 Authors@R: c(person("Mike", "Dietze", role = c("aut"), email = "dietze@bu.edu"), person("David", "LeBauer", role = c("aut", "cre"), diff --git a/modules/data.atmosphere/R/debias_met_regression.R b/modules/data.atmosphere/R/debias_met_regression.R index ff91b77d5d2..6817e9391cc 100644 --- a/modules/data.atmosphere/R/debias_met_regression.R +++ b/modules/data.atmosphere/R/debias_met_regression.R @@ -1034,8 +1034,8 @@ debias.met.regression <- function(train.data, source.data, n.ens, vars.debias=NU print( ggplot2::ggplot(data=dat.pred[dat.pred$Year>=mean(dat.pred$Year)-1 & dat.pred$Year<=mean(dat.pred$Year)+1,]) + ggplot2::geom_ribbon(ggplot2::aes(x=.data$Date, ymin=.data$lwr, ymax=.data$upr, fill="corrected"), alpha=0.5) + - ggplot2::geom_line(ggplot2::aes(x=.data$Date, y=mean, color="corrected"), size=0.5) + - ggplot2::geom_line(ggplot2::aes(x=.data$Date, y=.data$obs, color="original"), size=0.5) + + ggplot2::geom_line(ggplot2::aes(x=.data$Date, y=mean, color="corrected"), linewidth=0.5) + + ggplot2::geom_line(ggplot2::aes(x=.data$Date, y=.data$obs, color="original"), linewidth=0.5) + ggplot2::scale_color_manual(values=c("corrected" = "red", "original"="black")) + ggplot2::scale_fill_manual(values=c("corrected" = "red", "original"="black")) + ggplot2::guides(fill=F) + @@ -1058,7 +1058,7 @@ debias.met.regression <- function(train.data, source.data, n.ens, vars.debias=NU grDevices::png(file.path(path.diagnostics, paste(ens.name, v, "day2.png", sep="_")), height=6, width=6, units="in", res=220) print( ggplot2::ggplot(data=stack.sims[stack.sims$Year>=mean(stack.sims$Year)-2 & stack.sims$Year<=mean(stack.sims$Year)+2,]) + - ggplot2::geom_line(ggplot2::aes(x=.data$Date, y=values, color=ind), size=0.2, alpha=0.8) + + ggplot2::geom_line(ggplot2::aes(x=.data$Date, y=values, color=ind), linewidth=0.2, alpha=0.8) + ggplot2::ggtitle(paste0(v, " - example ensemble members (daily slice)")) + ggplot2::theme_bw() ) @@ -1074,8 +1074,8 @@ debias.met.regression <- function(train.data, source.data, n.ens, vars.debias=NU print( ggplot2::ggplot(data=dat.yr[,]) + ggplot2::geom_ribbon(ggplot2::aes(x=.data$Year, ymin=.data$lwr, ymax=.data$upr, fill="corrected"), alpha=0.5) + - ggplot2::geom_line(ggplot2::aes(x=.data$Year, y=mean, color="corrected"), size=0.5) + - ggplot2::geom_line(ggplot2::aes(x=.data$Year, y=.data$obs, color="original"), size=0.5) + + ggplot2::geom_line(ggplot2::aes(x=.data$Year, y=mean, color="corrected"), linewidth=0.5) + + ggplot2::geom_line(ggplot2::aes(x=.data$Year, y=.data$obs, color="original"), linewidth=0.5) + ggplot2::scale_color_manual(values=c("corrected" = "red", "original"="black")) + ggplot2::scale_fill_manual(values=c("corrected" = "red", "original"="black")) + ggplot2::guides(fill=F) + diff --git a/modules/uncertainty/R/plots.R b/modules/uncertainty/R/plots.R index 1cc9fa81418..9668079a633 100644 --- a/modules/uncertainty/R/plots.R +++ b/modules/uncertainty/R/plots.R @@ -93,7 +93,7 @@ plot_sensitivity <- function(sa.sample, sa.spline, trait, y.range = c(0, 50), me post.x <- seq(from = min(sa.sample), to = max(sa.sample), length.out = LENGTH_OUT) saplot <- saplot + ## plot spline function - ggplot2::geom_line(ggplot2::aes(x=.data$x, y=.data$y), data = data.frame(x = post.x, y = sa.spline(post.x)), size = linesize) + + ggplot2::geom_line(ggplot2::aes(x=.data$x, y=.data$y), data = data.frame(x = post.x, y = sa.spline(post.x)), linewidth = linesize) + ## plot points used to evaluate spline ggplot2::geom_point(ggplot2::aes(x=.data$x, y=.data$y), data = data.frame(x = sa.sample, y = sa.spline(sa.sample)), size = dotsize) + # indicate median with larger point @@ -115,7 +115,7 @@ plot_sensitivity <- function(sa.sample, sa.spline, trait, y.range = c(0, 50), me prior.x <- seq(from = min(prior.sa.sample), to = max(prior.sa.sample), length.out = LENGTH_OUT) saplot <- saplot + ## plot spline ggplot2::geom_line(ggplot2::aes(x = .data$x, y= .data$y), data = data.frame(x = prior.x, y = prior.sa.spline(prior.x)), - size = linesize, color = "grey") + ## plot points used to evaluate spline + linewidth = linesize, color = "grey") + ## plot points used to evaluate spline ggplot2::geom_point(ggplot2::aes(x= .data$x, y= .data$y), data = data.frame(x = prior.sa.sample, y = prior.sa.spline(prior.sa.sample)), size = dotsize, color = "grey") + ## indicate location of medians ggplot2::geom_point(ggplot2::aes(x = .data$x, y= .data$y), data = data.frame(x = prior.sa.sample[median.i], y = prior.sa.spline(prior.sa.sample[median.i])), diff --git a/shiny/ForecastingDashboard/animated_WCr_graphs.R b/shiny/ForecastingDashboard/animated_WCr_graphs.R index 962017e86b6..68765c1eca4 100755 --- a/shiny/ForecastingDashboard/animated_WCr_graphs.R +++ b/shiny/ForecastingDashboard/animated_WCr_graphs.R @@ -78,7 +78,7 @@ qle_lower = -50 p <-ggplot(nee.data, aes(group = start_date, ids = start_date, frame = start_date)) + #, label = NEE - Predicted geom_ribbon(aes(x = Time, ymin=Lower, ymax=Upper, fill="95% Confidence Interval"), alpha = 0.4) + - geom_line(aes(x = Time, y = NEE, color = "Observed Data"), size = 1) + + geom_line(aes(x = Time, y = NEE, color = "Observed Data"), linewidth = 1) + geom_line(aes(x = Time, y = Predicted, color = "Predicted Mean")) + ggtitle(paste0("Net Ecosystem Exchange for ", frame_start, " to ", frame_end, ", Willow Creek, Wisconsin")) + scale_color_manual(name = "Legend", labels = c("Predicted Mean", "Observed Data"), values=c("Predicted Mean" = "skyblue1", "Observed Data" = "firebrick4")) + @@ -90,7 +90,7 @@ p <-ggplot(nee.data, aes(group = start_date, ids = start_date, frame = start_dat q <- ggplot(le.data, aes(group = start_date, ids = start_date, frame = start_date)) + #, label= LE - Predicted geom_ribbon(aes(x = Time, ymin=Lower, ymax=Upper, fill="95% Confidence Interval"), alpha = 0.4) + - geom_line(aes(x = Time, y = LE, color = "Observed Data"), size = 1) + + geom_line(aes(x = Time, y = LE, color = "Observed Data"), linewidth = 1) + geom_line(aes(x = Time, y = Predicted, color = "Predicted Mean")) + ggtitle(paste0("Latent Energy for ", frame_start, " to ", frame_end, ", Willow Creek, Wisconsin")) + scale_color_manual(name = "Legend", labels = c("Predicted Mean", "Observed Data"), values=c("Predicted Mean" = "skyblue1", "Observed Data" = "firebrick4")) + diff --git a/shiny/ViewMet/DESCRIPTION b/shiny/ViewMet/DESCRIPTION index 513ef86631c..5ba6cf15890 100644 --- a/shiny/ViewMet/DESCRIPTION +++ b/shiny/ViewMet/DESCRIPTION @@ -1,5 +1,6 @@ Type: Shiny Title: Plot data from CF-formatted meteorology files +Version: 0.0.0.9000 License: BSD_3_clause + file LICENSE Author: Betsy Cowdery Tags: PEcAn diff --git a/shiny/ViewMet/server.R b/shiny/ViewMet/server.R index 3cb45c022e0..79d4e1f3745 100644 --- a/shiny/ViewMet/server.R +++ b/shiny/ViewMet/server.R @@ -187,7 +187,7 @@ server <- function(input, output, session) { p_overlay <- ggplot(rv$plot.data) + geom_line(aes(x=date, y=var, color=met)) + ylab(input$var) + ggtitle(input$var) - p_facet <- ggplot(rv$plot.data) + geom_line(aes(x=date, y=var, color=met), size=1) + + p_facet <- ggplot(rv$plot.data) + geom_line(aes(x=date, y=var, color=met), linewidth=1) + ylab(input$var) + ggtitle(input$var) + facet_grid(met ~ .)