-
Notifications
You must be signed in to change notification settings - Fork 50
Description
Issue description
Expected behavior:
- We can install
lightning.gpuandlightning.tensorin a GPU-enabled google colab runtime (T4 GPU) - PennyLane can create a device using
lightning.tensorandlightning.gpuin a GPU-enabled google colab runtime (T4 GPU). - The following code runs correctly:
!pip install custatevec_cu12
!pip install pennylane-lightning-gpu pennylane-lightning-tensor
import pennylane as qml
dev = qml.device('lightning.tensor', wires=3)dev = qml.device('lightning.gpu', wires=3)
Actual behavior:
- Installation runs without errors
- Trying to create a device raises
ImportError: Pre-compiled binaries for lightning.tensor are not available.
>>> dev = qml.device('lightning.tensor', wires=3)
ImportError: Pre-compiled binaries for lightning.tensor are not available.
dev = qml.device('lightning.gpu', wires=3)
ImportError: Pre-compiled binaries for lightning.tensor are not available.
Reproduces how often:
Every time
System information:
Name: PennyLane
Version: 0.39.0
Summary: PennyLane is a cross-platform Python library for quantum computing, quantum machine learning, and quantum chemistry. Train a quantum computer the same way as a neural network.
Home-page: https://github.com/PennyLaneAI/pennylane
Author:
Author-email:
License: Apache License 2.0
Location: /usr/local/lib/python3.10/dist-packages
Requires: appdirs, autograd, autoray, cachetools, networkx, numpy, packaging, pennylane-lightning, requests, rustworkx, scipy, toml, typing-extensions
Required-by: PennyLane_Lightning, PennyLane_Lightning_GPU, PennyLane_Lightning_Tensor
Platform info: Linux-6.1.85+-x86_64-with-glibc2.35
Python version: 3.10.12
Numpy version: 1.26.4
Scipy version: 1.13.1
Installed devices:
- default.clifford (PennyLane-0.39.0)
- default.gaussian (PennyLane-0.39.0)
- default.mixed (PennyLane-0.39.0)
- default.qubit (PennyLane-0.39.0)
- default.qutrit (PennyLane-0.39.0)
- default.qutrit.mixed (PennyLane-0.39.0)
- default.tensor (PennyLane-0.39.0)
- null.qubit (PennyLane-0.39.0)
- reference.qubit (PennyLane-0.39.0)
- lightning.gpu (PennyLane_Lightning_GPU-0.39.0)
- lightning.tensor (PennyLane_Lightning_Tensor-0.39.0)
- lightning.qubit (PennyLane_Lightning-0.39.0)
Source code and tracebacks
lightning.tensor full traceback:
/usr/local/lib/python3.10/dist-packages/pennylane_lightning/lightning_tensor/lightning_tensor.py:55: UserWarning: /usr/local/lib/python3.10/dist-packages/pennylane_lightning/../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkGetErrorLog_12_6, version libnvJitLink.so.12
warn(str(ex), UserWarning)
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
[<ipython-input-1-b687fb8fe8cf>](https://localhost:8080/#) in <cell line: 3>()
1 import pennylane as qml
2
----> 3 dev = qml.device('lightning.tensor', wires=3)
1 frames
[/usr/local/lib/python3.10/dist-packages/pennylane_lightning/lightning_tensor/lightning_tensor.py](https://localhost:8080/#) in __init__(self, wires, shots, method, c_dtype, **kwargs)
286 ):
287 if not self._CPP_BINARY_AVAILABLE:
--> 288 raise ImportError("Pre-compiled binaries for lightning.tensor are not available. ")
289
290 if not accepted_methods(method):
ImportError: Pre-compiled binaries for lightning.tensor are not available.
---------------------------------------------------------------------------
NOTE: If your import is failing due to a missing package, you can
manually install dependencies using either !pip or !apt.
To view examples of installing some common dependencies, click the
"Open Examples" button below.
---------------------------------------------------------------------------lightning.gpu full traceback:
/usr/local/lib/python3.10/dist-packages/pennylane_lightning/lightning_gpu/lightning_gpu.py:68: UserWarning: /usr/local/lib/python3.10/dist-packages/pennylane_lightning/../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkGetErrorLog_12_6, version libnvJitLink.so.12
warn(str(ex), UserWarning)
/usr/local/lib/python3.10/dist-packages/pennylane_lightning/lightning_gpu/_adjoint_jacobian.py:46: UserWarning: /usr/local/lib/python3.10/dist-packages/pennylane_lightning/../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkGetErrorLog_12_6, version libnvJitLink.so.12
warn(str(ex), UserWarning)
/usr/local/lib/python3.10/dist-packages/pennylane_lightning/lightning_gpu/_measurements.py:35: UserWarning: /usr/local/lib/python3.10/dist-packages/pennylane_lightning/../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkGetErrorLog_12_6, version libnvJitLink.so.12
warn(str(error_import), UserWarning)
/usr/local/lib/python3.10/dist-packages/pennylane_lightning/lightning_gpu/_state_vector.py:32: UserWarning: /usr/local/lib/python3.10/dist-packages/pennylane_lightning/../nvidia/cusparse/lib/libcusparse.so.12: undefined symbol: __nvJitLinkGetErrorLog_12_6, version libnvJitLink.so.12
warn(str(ex), UserWarning)
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
[<ipython-input-2-f85c5c9db4f9>](https://localhost:8080/#) in <cell line: 1>()
----> 1 dev = qml.device('lightning.gpu', wires=3)
1 frames
[/usr/local/lib/python3.10/dist-packages/pennylane_lightning/lightning_gpu/lightning_gpu.py](https://localhost:8080/#) in __init__(self, wires, c_dtype, shots, batch_obs, mpi, mpi_buf_size, use_async)
330 ):
331 if not self._CPP_BINARY_AVAILABLE:
--> 332 raise ImportError(
333 "Pre-compiled binaries for lightning.gpu are not available. "
334 "To manually compile from source, follow the instructions at "
ImportError: Pre-compiled binaries for lightning.gpu are not available. To manually compile from source, follow the instructions at https://docs.pennylane.ai/projects/lightning/en/stable/dev/installation.html.
---------------------------------------------------------------------------
NOTE: If your import is failing due to a missing package, you can
manually install dependencies using either !pip or !apt.
To view examples of installing some common dependencies, click the
"Open Examples" button below.
---------------------------------------------------------------------------