@@ -239,7 +239,7 @@ runActimetric = function(input_directory = NULL, output_directory = NULL, studyn
239239 S = matrix (0 ,0 ,4 ) # dummy variable needed to cope with head-tailing succeeding blocks of data
240240 # ---------------------------------------------------------------------
241241 # Run Pipeline...
242- nonwear = enmo = agcounts = LFEcounts = tilt = anglez = NULL
242+ nonwear = enmo = agcounts = LFEcounts = tilt = anglez = anglez_df = NULL
243243 activity = factor ()
244244 while (isLastBlock == FALSE ) {
245245 # 1 - read and extract calibration coefficients
@@ -431,10 +431,12 @@ runActimetric = function(input_directory = NULL, output_directory = NULL, studyn
431431 ts [is.na(ts )] = 0
432432 # classify sleep and nonwear and add them to ts$activity
433433 if (do.sleep == TRUE | do.nonwear == TRUE ) {
434- # derive timestamp for anglez
435- ts_sleep = deriveTimestamps(from = recording_starttime , length = length(anglez ),
436- epoch = 5 , tz = tz )
437- anglez_df = data.frame (date = ts_sleep [, 1 ], time = ts_sleep [, 2 ], anglez = anglez )
434+ # derive timestamp for anglez if do.sleep == TRUE
435+ if (do.sleep == TRUE ) {
436+ ts_sleep = deriveTimestamps(from = recording_starttime , length = length(anglez ),
437+ epoch = 5 , tz = tz )
438+ anglez_df = data.frame (date = ts_sleep [, 1 ], time = ts_sleep [, 2 ], anglez = anglez )
439+ }
438440 activity = classifySleep(anglez = anglez_df , starttime = recording_starttime ,
439441 classifier = classifier , infoClassifier = infoClassifier ,
440442 ts = ts , do.sleep = do.sleep , do.nonwear = do.nonwear )
0 commit comments