Skip to content

NuScenes val mIoU ≈ 4.9% #170

@sobikim

Description

@sobikim

Hi, I evaluated PTv3 on nuScenes but get very low mIoU. Details below.

weights

config

dataset

command

python tools/test.py --config-file configs/nuscenes/semseg-pt-v3m1-0-base.py --num-gpus 2 --options weight=ckpt/nuscenes-semseg-pt-v3m1-0-base/model_best.pth

result

Val result: mIoU/mAcc/allAcc 0.0490/0.1642/0.2441
Class_0 - barrier Result: iou/accuracy 0.0507/0.0630
Class_1 - bicycle Result: iou/accuracy 0.0073/0.0074
Class_2 - bus Result: iou/accuracy 0.0004/0.0004
Class_3 - car Result: iou/accuracy 0.0000/0.0000
Class_4 - construction_vehicle Result: iou/accuracy 0.0000/0.0000
Class_5 - motorcycle Result: iou/accuracy 0.0028/0.0028
Class_6 - pedestrian Result: iou/accuracy 0.0241/0.0241
Class_7 - traffic_cone Result: iou/accuracy 0.0107/0.5553
Class_8 - trailer Result: iou/accuracy 0.0044/0.0185
Class_9 - truck Result: iou/accuracy 0.0415/0.0530
Class_10 - driveable_surface Result: iou/accuracy 0.0256/0.0257
Class_11 - other_flat Result: iou/accuracy 0.0000/0.0000
Class_12 - sidewalk Result: iou/accuracy 0.1332/0.8223
Class_13 - terrain Result: iou/accuracy 0.0110/0.0113
Class_14 - manmade Result: iou/accuracy 0.1435/0.1511
Class_15 - vegetation Result: iou/accuracy 0.3282/0.8927

question

I don’t understand why the accuracy is so low.
If there are any additional steps or processing required during testing, please let me know.
Thank you!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions