|
| 1 | +# MicroJSON Tiling Demo |
| 2 | + |
| 3 | +This notebook demonstrates how to use the MicroJSON tiling functionality to create vector tiles from MicroJSON data. Vector tiles are a way to efficiently store and serve geospatial data for web mapping applications. |
| 4 | + |
| 5 | +## Overview |
| 6 | + |
| 7 | +In this demo, we will: |
| 8 | +1. Generate sample polygon data (or use existing MicroJSON data) |
| 9 | +2. Create a TileJSON specification |
| 10 | +3. Generate vector tiles from the MicroJSON data |
| 11 | +4. Save the tiles and metadata for use in web mapping applications |
| 12 | + |
| 13 | +## Import Required Libraries |
| 14 | + |
| 15 | +First, let's import the necessary libraries for tiling MicroJSON data. |
| 16 | + |
| 17 | + |
| 18 | +```python |
| 19 | +from microjson.tilewriter import ( |
| 20 | + TileWriter, |
| 21 | + getbounds, |
| 22 | + extract_fields_ranges_enums |
| 23 | +) |
| 24 | +from pathlib import Path |
| 25 | +from microjson.tilemodel import TileJSON, TileModel, TileLayer |
| 26 | +import os |
| 27 | +from microjson.polygen import generate_polygons |
| 28 | +import json |
| 29 | +``` |
| 30 | + |
| 31 | +## Option 1: Generate Sample Polygon Data |
| 32 | + |
| 33 | +If you don't have existing MicroJSON data, we can generate sample polygon data using the `generate_polygons` function. |
| 34 | + |
| 35 | + |
| 36 | +```python |
| 37 | +# Parameters for generating polygons |
| 38 | +GRID_SIZE = 10000 # Size of the grid |
| 39 | +CELL_SIZE = 100 # Size of each cell in the grid |
| 40 | +MIN_VERTICES = 10 # Minimum number of vertices per polygon |
| 41 | +MAX_VERTICES = 100 # Maximum number of vertices per polygon |
| 42 | + |
| 43 | +# Metadata types and options |
| 44 | +meta_types = { |
| 45 | + "num_vertices": "int", |
| 46 | +} |
| 47 | +meta_values_options = { |
| 48 | + "polytype": ["Type1", "Type2", "Type3", "Type4"] |
| 49 | +} |
| 50 | + |
| 51 | +# Output file path |
| 52 | +microjson_data_path = "example_generated.json" |
| 53 | + |
| 54 | +# Generate polygons |
| 55 | +generate_polygons( |
| 56 | + GRID_SIZE, |
| 57 | + CELL_SIZE, |
| 58 | + MIN_VERTICES, |
| 59 | + MAX_VERTICES, |
| 60 | + meta_types, |
| 61 | + meta_values_options, |
| 62 | + microjson_data_path |
| 63 | +) |
| 64 | + |
| 65 | +print(f"Generated polygon data saved to {microjson_data_path}") |
| 66 | +``` |
| 67 | + |
| 68 | + Generated polygon data saved to example_generated.json |
| 69 | + |
| 70 | + |
| 71 | +## Option 2: Use Existing MicroJSON Data |
| 72 | + |
| 73 | +Alternatively, you can use existing MicroJSON data. Uncomment and modify the following cell to use your own data. |
| 74 | + |
| 75 | + |
| 76 | +```python |
| 77 | +# microjson_data_path = "path/to/your/data.json" |
| 78 | +# print(f"Using existing MicroJSON data from {microjson_data_path}") |
| 79 | +``` |
| 80 | + |
| 81 | +## Visualize the MicroJSON Data |
| 82 | + |
| 83 | +Let's take a look at the structure of our MicroJSON data. |
| 84 | + |
| 85 | + |
| 86 | +```python |
| 87 | +# Load and display the first few features of the MicroJSON data |
| 88 | +with open(microjson_data_path, 'r') as f: |
| 89 | + data = json.load(f) |
| 90 | + |
| 91 | +# Display basic information about the data |
| 92 | +print(f"Number of features: {len(data.get('features', []))}") |
| 93 | + |
| 94 | +# Display the first feature (truncated for readability) |
| 95 | +if 'features' in data and len(data['features']) > 0: |
| 96 | + first_feature = data['features'][0] |
| 97 | + print("\nSample feature:") |
| 98 | + print(json.dumps(first_feature, indent=2)[:500] + "...") |
| 99 | +``` |
| 100 | + |
| 101 | + Number of features: 10000 |
| 102 | + |
| 103 | + Sample feature: |
| 104 | + { |
| 105 | + "type": "Feature", |
| 106 | + "geometry": { |
| 107 | + "type": "Polygon", |
| 108 | + "coordinates": [ |
| 109 | + [ |
| 110 | + [ |
| 111 | + 62.7619624272948, |
| 112 | + 9.7445327252005 |
| 113 | + ], |
| 114 | + [ |
| 115 | + 66.55786998050925, |
| 116 | + 10.453250162004622 |
| 117 | + ], |
| 118 | + [ |
| 119 | + 86.82803641255592, |
| 120 | + 51.64994084555056 |
| 121 | + ], |
| 122 | + [ |
| 123 | + 77.93853896392383, |
| 124 | + 68.85236038607228 |
| 125 | + ], |
| 126 | + [ |
| 127 | + 67.57602296868663, |
| 128 | + 78.79357410969412 |
| 129 | + ], |
| 130 | + [ |
| 131 | + 4... |
| 132 | + |
| 133 | + |
| 134 | +## Extract Fields, Ranges, and Enums |
| 135 | + |
| 136 | +For existing MicroJSON data, we can extract field information, value ranges, and enumeration values. |
| 137 | + |
| 138 | + |
| 139 | +```python |
| 140 | +# Extract fields, ranges, and enums from the MicroJSON data |
| 141 | +field_names, field_ranges, field_enums = extract_fields_ranges_enums(microjson_data_path) |
| 142 | + |
| 143 | +print("Extracted field names:") |
| 144 | +print(field_names) |
| 145 | + |
| 146 | +print("\nExtracted field ranges:") |
| 147 | +print(field_ranges) |
| 148 | + |
| 149 | +print("\nExtracted field enums:") |
| 150 | +print(field_enums) |
| 151 | +``` |
| 152 | + |
| 153 | + Extracted field names: |
| 154 | + {'num_vertices': 'Number', 'polytype': 'String'} |
| 155 | + |
| 156 | + Extracted field ranges: |
| 157 | + {'num_vertices': [10, 24]} |
| 158 | + |
| 159 | + Extracted field enums: |
| 160 | + {'polytype': {'Type3', 'Type2', 'Type1', 'Type4'}} |
| 161 | + |
| 162 | + |
| 163 | +## Define Vector Layers |
| 164 | + |
| 165 | +Now, let's define the vector layers for our tiles. We'll use the extracted field information. |
| 166 | + |
| 167 | + |
| 168 | +```python |
| 169 | +# Create a TileLayer using the extracted fields |
| 170 | +vector_layers = [ |
| 171 | + TileLayer( |
| 172 | + id="polygon-layer", |
| 173 | + fields=field_names, |
| 174 | + minzoom=0, |
| 175 | + maxzoom=10, |
| 176 | + description="Layer containing polygon data", |
| 177 | + fieldranges=field_ranges, |
| 178 | + fieldenums=field_enums, |
| 179 | + ) |
| 180 | +] |
| 181 | + |
| 182 | +print("Vector layer defined with the following properties:") |
| 183 | +print(f"ID: {vector_layers[0].id}") |
| 184 | +print(f"Fields: {vector_layers[0].fields}") |
| 185 | +print(f"Zoom range: {vector_layers[0].minzoom} - {vector_layers[0].maxzoom}") |
| 186 | +``` |
| 187 | + |
| 188 | + Vector layer defined with the following properties: |
| 189 | + ID: polygon-layer |
| 190 | + Fields: {'num_vertices': 'Number', 'polytype': 'String'} |
| 191 | + Zoom range: 0 - 10 |
| 192 | + |
| 193 | + |
| 194 | +## Get Bounds and Center |
| 195 | + |
| 196 | +Next, we'll calculate the bounds of our data to properly configure the tile model. |
| 197 | + |
| 198 | + |
| 199 | +```python |
| 200 | +# Get bounds of the data (square=True ensures the bounds form a square) |
| 201 | +maxbounds = getbounds(microjson_data_path, square=True) |
| 202 | +print(f"Bounds: {maxbounds}") |
| 203 | + |
| 204 | +# Calculate the center of the bounds |
| 205 | +center = [0, (maxbounds[0] + maxbounds[2]) / 2, (maxbounds[1] + maxbounds[3]) / 2] |
| 206 | +print(f"Center: {center}") |
| 207 | +``` |
| 208 | + |
| 209 | + Bounds: [5.352408515784582, 5.049442955279417, 9995.190828709661, 9994.887863149157] |
| 210 | + Center: [0, 5000.271618612723, 4999.9686530522185] |
| 211 | + |
| 212 | + |
| 213 | +## Create the Tile Model |
| 214 | + |
| 215 | +Now, let's create the TileModel that will define our tile set. |
| 216 | + |
| 217 | + |
| 218 | +```python |
| 219 | +# Create output directory for tiles |
| 220 | +os.makedirs("tiles", exist_ok=True) |
| 221 | + |
| 222 | +# Instantiate TileModel with our settings |
| 223 | +tile_model = TileModel( |
| 224 | + tilejson="3.0.0", |
| 225 | + tiles=[Path("tiles/{z}/{x}/{y}.pbf")], # Local path or URL |
| 226 | + name="Example Tile Layer", |
| 227 | + description="A TileJSON example incorporating MicroJSON data", |
| 228 | + version="1.0.0", |
| 229 | + attribution="Polus AI", |
| 230 | + minzoom=0, |
| 231 | + maxzoom=7, |
| 232 | + bounds=maxbounds, |
| 233 | + center=center, |
| 234 | + vector_layers=vector_layers |
| 235 | +) |
| 236 | + |
| 237 | +# Create the root model with our TileModel instance |
| 238 | +tileobj = TileJSON(root=tile_model) |
| 239 | + |
| 240 | +# Display the TileJSON specification |
| 241 | +print("TileJSON specification:") |
| 242 | +print(tileobj.model_dump_json(indent=2)) |
| 243 | +``` |
| 244 | + |
| 245 | + TileJSON specification: |
| 246 | + { |
| 247 | + "tilejson": "3.0.0", |
| 248 | + "tiles": [ |
| 249 | + "tiles/{z}/{x}/{y}.pbf" |
| 250 | + ], |
| 251 | + "name": "Example Tile Layer", |
| 252 | + "description": "A TileJSON example incorporating MicroJSON data", |
| 253 | + "version": "1.0.0", |
| 254 | + "attribution": "Polus AI", |
| 255 | + "template": null, |
| 256 | + "legend": null, |
| 257 | + "scheme": null, |
| 258 | + "grids": null, |
| 259 | + "data": null, |
| 260 | + "minzoom": 0, |
| 261 | + "maxzoom": 7, |
| 262 | + "bounds": [ |
| 263 | + 5.352408515784582, |
| 264 | + 5.049442955279417, |
| 265 | + 9995.190828709661, |
| 266 | + 9994.887863149157 |
| 267 | + ], |
| 268 | + "center": [ |
| 269 | + 0.0, |
| 270 | + 5000.271618612723, |
| 271 | + 4999.9686530522185 |
| 272 | + ], |
| 273 | + "fillzoom": null, |
| 274 | + "vector_layers": [ |
| 275 | + { |
| 276 | + "id": "polygon-layer", |
| 277 | + "fields": { |
| 278 | + "num_vertices": "Number", |
| 279 | + "polytype": "String" |
| 280 | + }, |
| 281 | + "minzoom": 0, |
| 282 | + "maxzoom": 10, |
| 283 | + "description": "Layer containing polygon data", |
| 284 | + "fieldranges": { |
| 285 | + "num_vertices": [ |
| 286 | + 10, |
| 287 | + 24 |
| 288 | + ] |
| 289 | + }, |
| 290 | + "fieldenums": { |
| 291 | + "polytype": [ |
| 292 | + "Type3", |
| 293 | + "Type2", |
| 294 | + "Type1", |
| 295 | + "Type4" |
| 296 | + ] |
| 297 | + }, |
| 298 | + "fielddescriptions": null |
| 299 | + } |
| 300 | + ], |
| 301 | + "multiscale": null, |
| 302 | + "scale_factor": null |
| 303 | + } |
| 304 | + |
| 305 | + |
| 306 | +## Export TileJSON Metadata |
| 307 | + |
| 308 | +Let's export the TileJSON metadata to a file. |
| 309 | + |
| 310 | + |
| 311 | +```python |
| 312 | +# Export to tilejson |
| 313 | +with open("tiles/metadata.json", "w") as f: |
| 314 | + f.write(tileobj.model_dump_json(indent=2)) |
| 315 | + |
| 316 | +print("TileJSON metadata exported to tiles/metadata.json") |
| 317 | +``` |
| 318 | + |
| 319 | + TileJSON metadata exported to tiles/metadata.json |
| 320 | + |
| 321 | + |
| 322 | +## Generate Vector Tiles |
| 323 | + |
| 324 | +Finally, let's generate the vector tiles from our MicroJSON data. |
| 325 | + |
| 326 | + |
| 327 | +```python |
| 328 | +# Initialize the TileWriter |
| 329 | +handler = TileWriter(tile_model, pbf=True) |
| 330 | + |
| 331 | +# Convert MicroJSON to tiles |
| 332 | +handler.microjson2tiles(microjson_data_path, validate=False) |
| 333 | + |
| 334 | +print("Vector tiles generated successfully!") |
| 335 | + |
| 336 | +# List the generated tile directories to verify |
| 337 | +tile_dirs = [d for d in os.listdir("tiles") if os.path.isdir(os.path.join("tiles", d))] |
| 338 | +print(f"Generated tile zoom levels: {tile_dirs}") |
| 339 | +``` |
| 340 | + |
| 341 | + Vector tiles generated successfully! |
| 342 | + Generated tile zoom levels: ['7', '2', '0', 'tiled_example', '1', '5', '3', '4', '6'] |
| 343 | + |
| 344 | + |
| 345 | +## Conclusion |
| 346 | + |
| 347 | +In this notebook, we've demonstrated how to: |
| 348 | + |
| 349 | +1. Generate or use existing MicroJSON data |
| 350 | +2. Extract field information from the data |
| 351 | +3. Define vector layers for our tiles |
| 352 | +4. Calculate bounds and center for our tile set |
| 353 | +5. Create a TileJSON specification |
| 354 | +6. Generate vector tiles from MicroJSON data |
| 355 | + |
| 356 | +These vector tiles can now be used in web mapping applications like Mapbox GL JS, Leaflet, or OpenLayers to display the data interactively. |
0 commit comments