|
10 | 10 |
|
11 | 11 | </h2> |
12 | 12 |
|
13 | | - |
| 13 | + |
14 | 14 | [](https://pepy.tech/project/portpy?&left_text=totalusers) |
15 | 15 | [](https://pepy.tech/project/portpy) |
16 | 16 |
|
@@ -57,18 +57,19 @@ we plan to launch an educational YouTube channel to assist researchers new to th |
57 | 57 | # Quick start and examples <a name="QuickStart"></a> |
58 | 58 | The easiest way to start is through the PorPy following Jupiter Notebook examples. |
59 | 59 |
|
60 | | -| Example File | Description | |
61 | | -|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------- | |
62 | | -| [1_basic_tutorial.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/1_basic_tutorial.ipynb) | Demonstrates the main functionalities of PortPy (e.g., Access data, create an IMRT plan, visualize) | |
63 | | -| [vmat_scp_tutorial.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_scp_tutorial.ipynb) | Creates a VMAT plan using sequential convex programming | |
64 | | -| [vmat_scp_dose_prediction.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_scp_dose_prediction.ipynb) | Predicts 3D dose distribution using deep learning and converts it into a deliverable VMAT plan | |
65 | | -| [3d_slicer_integration.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/3d_slicer_integration.ipynb) | Creates an IMRT plan and visualizes it in 3D-Slicer | |
66 | | -| [imrt_tps_import.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/imrt_tps_import.ipynb) | 1. Outputs IMRT plan in DICOM RT format and imports it into TPS. <br>2. Outputs IMRT plan optimal fluence in an Eclipse-compatable format and imports it into Eclipse | |
67 | | -| [vmat_tps_import.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_tps_import.ipynb) | Outputs VMAT plan in DICOM RT format and imports it into TPS | |
68 | | -| [imrt_dose_prediction.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/imrt_dose_prediction.ipynb) | Predicts 3D dose distribution using deep learning and converts it into a deliverable IMRT plan | |
69 | | -| [vmat_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_global_optimal.ipynb) | Finds a globally optimal VMAT plan | |
70 | | -| [beam_orientation_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/beam_orientation_global_optimal.ipynb) | Finds globally optimal beam angles for IMRT | |
71 | | -| [dvh_constraint_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/dvh_constraint_global_optimal.ipynb) | Finds a globally optimal plan meeting Dose Volume Histogram (DVH) constraints | |
| 60 | +| Example File | Description | |
| 61 | +|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
| 62 | +| [1_basic_tutorial.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/1_basic_tutorial.ipynb) | Demonstrates the main functionalities of PortPy (e.g., Access data, create an IMRT plan, visualize) | |
| 63 | +| [eclipse_photon_dose_calculation.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/eclipse_photon_dose_calculation.ipynb) | Demonstrates the capability of running dose calculation for patients outside PortPy dataset using Varian's photon dose calculation module and perform optimization in PortPy | |
| 64 | +| [vmat_scp_tutorial.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_scp_tutorial.ipynb) | Creates a VMAT plan using sequential convex programming | |
| 65 | +| [vmat_scp_dose_prediction.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_scp_dose_prediction.ipynb) | Predicts 3D dose distribution using deep learning and converts it into a deliverable VMAT plan | |
| 66 | +| [3d_slicer_integration.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/3d_slicer_integration.ipynb) | Creates an IMRT plan and visualizes it in 3D-Slicer | |
| 67 | +| [imrt_tps_import.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/imrt_tps_import.ipynb) | 1. Outputs IMRT plan in DICOM RT format and imports it into TPS. <br>2. Outputs IMRT plan optimal fluence in an Eclipse-compatable format and imports it into Eclipse | |
| 68 | +| [vmat_tps_import.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_tps_import.ipynb) | Outputs VMAT plan in DICOM RT format and imports it into TPS | |
| 69 | +| [imrt_dose_prediction.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/imrt_dose_prediction.ipynb) | Predicts 3D dose distribution using deep learning and converts it into a deliverable IMRT plan | |
| 70 | +| [vmat_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_global_optimal.ipynb) | Finds a globally optimal VMAT plan | |
| 71 | +| [beam_orientation_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/beam_orientation_global_optimal.ipynb) | Finds globally optimal beam angles for IMRT | |
| 72 | +| [dvh_constraint_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/dvh_constraint_global_optimal.ipynb) | Finds a globally optimal plan meeting Dose Volume Histogram (DVH) constraints | |
72 | 73 |
|
73 | 74 |
|
74 | 75 |
|
@@ -108,7 +109,7 @@ More information about data can be found in [Data](#Data) section. |
108 | 109 | cannot use your own dataset for now. We will address this problem in the near future |
109 | 110 | ```python |
110 | 111 | # Use PortPy DataExplorer class to explore PortPy data |
111 | | - data = pp.DataExplorer(data_dir=''../data) |
| 112 | + data = pp.DataExplorer(data_dir='../data') |
112 | 113 | # Load ct, structure set, beams for the above patient using CT, Structures, and Beams classes |
113 | 114 | ct = pp.CT(data) |
114 | 115 | structs = pp.Structures(data) |
@@ -218,7 +219,10 @@ We have adopted the widely-used JSON and HDF5 formats for data storage. |
218 | 219 | ``` |
219 | 220 | pip install portpy[mosek, pydicom] |
220 | 221 | ``` |
221 | | - |
| 222 | + * For installing all the additional packages |
| 223 | + ``` |
| 224 | + pip install portpy[full] |
| 225 | + ``` |
222 | 226 |
|
223 | 227 | 2. Install using conda: |
224 | 228 |
|
|
0 commit comments