Skip to content

Commit a35967f

Browse files
committed
Updates for version v1.0.7 (Major)
- Add photon dose calculation module for custom patients outside PortPy dataset - Create example notebook for dose calculation of custom patient outside PortPy data and optimize the plan using PortPy Minor bug fixes - Add more colors to visualization.py for additional structures - Add create_ct_dose_voxel_map.py for photon dose calc - Expand functionality for convert_dose_rt_dicom_to_portpy.py if ct object is not available.
1 parent 2f91f61 commit a35967f

File tree

7 files changed

+1034
-22
lines changed

7 files changed

+1034
-22
lines changed

README.md

Lines changed: 19 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -10,7 +10,7 @@
1010

1111
</h2>
1212

13-
![Version](https://img.shields.io/static/v1?label=latest&message=v1.0.6&color=darkgreen)
13+
![Version](https://img.shields.io/static/v1?label=latest&message=v1.0.7&color=darkgreen)
1414
[![Total Downloads](https://static.pepy.tech/personalized-badge/portpy?period=total&units=international_system&left_color=grey&right_color=blue&left_text=total%20downloads)](https://pepy.tech/project/portpy?&left_text=totalusers)
1515
[![Monthly Downloads](https://static.pepy.tech/badge/portpy/month)](https://pepy.tech/project/portpy)
1616

@@ -57,18 +57,19 @@ we plan to launch an educational YouTube channel to assist researchers new to th
5757
# Quick start and examples <a name="QuickStart"></a>
5858
The easiest way to start is through the PorPy following Jupiter Notebook examples.
5959

60-
| Example File | Description |
61-
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
62-
| [1_basic_tutorial.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/1_basic_tutorial.ipynb) | Demonstrates the main functionalities of PortPy (e.g., Access data, create an IMRT plan, visualize) |
63-
| [vmat_scp_tutorial.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_scp_tutorial.ipynb) | Creates a VMAT plan using sequential convex programming |
64-
| [vmat_scp_dose_prediction.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_scp_dose_prediction.ipynb) | Predicts 3D dose distribution using deep learning and converts it into a deliverable VMAT plan |
65-
| [3d_slicer_integration.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/3d_slicer_integration.ipynb) | Creates an IMRT plan and visualizes it in 3D-Slicer |
66-
| [imrt_tps_import.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/imrt_tps_import.ipynb) | 1. Outputs IMRT plan in DICOM RT format and imports it into TPS. <br>2. Outputs IMRT plan optimal fluence in an Eclipse-compatable format and imports it into Eclipse |
67-
| [vmat_tps_import.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_tps_import.ipynb) | Outputs VMAT plan in DICOM RT format and imports it into TPS |
68-
| [imrt_dose_prediction.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/imrt_dose_prediction.ipynb) | Predicts 3D dose distribution using deep learning and converts it into a deliverable IMRT plan |
69-
| [vmat_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_global_optimal.ipynb) | Finds a globally optimal VMAT plan |
70-
| [beam_orientation_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/beam_orientation_global_optimal.ipynb) | Finds globally optimal beam angles for IMRT |
71-
| [dvh_constraint_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/dvh_constraint_global_optimal.ipynb) | Finds a globally optimal plan meeting Dose Volume Histogram (DVH) constraints |
60+
| Example File | Description |
61+
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
62+
| [1_basic_tutorial.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/1_basic_tutorial.ipynb) | Demonstrates the main functionalities of PortPy (e.g., Access data, create an IMRT plan, visualize) |
63+
| [eclipse_photon_dose_calculation.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/eclipse_photon_dose_calculation.ipynb) | Demonstrates the capability of running dose calculation for patients outside PortPy dataset using Varian's photon dose calculation module and perform optimization in PortPy |
64+
| [vmat_scp_tutorial.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_scp_tutorial.ipynb) | Creates a VMAT plan using sequential convex programming |
65+
| [vmat_scp_dose_prediction.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_scp_dose_prediction.ipynb) | Predicts 3D dose distribution using deep learning and converts it into a deliverable VMAT plan |
66+
| [3d_slicer_integration.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/3d_slicer_integration.ipynb) | Creates an IMRT plan and visualizes it in 3D-Slicer |
67+
| [imrt_tps_import.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/imrt_tps_import.ipynb) | 1. Outputs IMRT plan in DICOM RT format and imports it into TPS. <br>2. Outputs IMRT plan optimal fluence in an Eclipse-compatable format and imports it into Eclipse |
68+
| [vmat_tps_import.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_tps_import.ipynb) | Outputs VMAT plan in DICOM RT format and imports it into TPS |
69+
| [imrt_dose_prediction.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/imrt_dose_prediction.ipynb) | Predicts 3D dose distribution using deep learning and converts it into a deliverable IMRT plan |
70+
| [vmat_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/vmat_global_optimal.ipynb) | Finds a globally optimal VMAT plan |
71+
| [beam_orientation_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/beam_orientation_global_optimal.ipynb) | Finds globally optimal beam angles for IMRT |
72+
| [dvh_constraint_global_optimal.ipynb](https://github.com/PortPy-Project/PortPy/blob/master/examples/dvh_constraint_global_optimal.ipynb) | Finds a globally optimal plan meeting Dose Volume Histogram (DVH) constraints |
7273

7374

7475

@@ -108,7 +109,7 @@ More information about data can be found in [Data](#Data) section.
108109
cannot use your own dataset for now. We will address this problem in the near future
109110
```python
110111
# Use PortPy DataExplorer class to explore PortPy data
111-
data = pp.DataExplorer(data_dir=''../data)
112+
data = pp.DataExplorer(data_dir='../data')
112113
# Load ct, structure set, beams for the above patient using CT, Structures, and Beams classes
113114
ct = pp.CT(data)
114115
structs = pp.Structures(data)
@@ -218,7 +219,10 @@ We have adopted the widely-used JSON and HDF5 formats for data storage.
218219
```
219220
pip install portpy[mosek, pydicom]
220221
```
221-
222+
* For installing all the additional packages
223+
```
224+
pip install portpy[full]
225+
```
222226

223227
2. Install using conda:
224228

0 commit comments

Comments
 (0)