|
| 1 | +--- |
| 2 | +title: "Langfuse" |
| 3 | +description: "Integrate Langfuse observability with Portkey's AI gateway for comprehensive LLM monitoring and advanced routing capabilities" |
| 4 | +--- |
| 5 | + |
| 6 | +Langfuse is an open-source LLM observability platform that helps you monitor, debug, and analyze your LLM applications. When combined with Portkey, you get the best of both worlds: Langfuse's detailed observability and Portkey's advanced AI gateway features. |
| 7 | + |
| 8 | +This integration allows you to: |
| 9 | +- Track all LLM requests in Langfuse while routing through Portkey |
| 10 | +- Use Portkey's 250+ LLM providers with Langfuse observability |
| 11 | +- Implement advanced features like caching, fallbacks, and load balancing |
| 12 | +- Maintain detailed traces and analytics in both platforms |
| 13 | + |
| 14 | +## Quick Start Integration |
| 15 | + |
| 16 | +Since Portkey provides an OpenAI-compatible API, integrating with Langfuse is straightforward using Langfuse's OpenAI wrapper. |
| 17 | + |
| 18 | +### Installation |
| 19 | + |
| 20 | +```bash |
| 21 | +pip install portkey-ai langfuse openai |
| 22 | +``` |
| 23 | + |
| 24 | +### Basic Setup |
| 25 | + |
| 26 | +```python |
| 27 | +import os |
| 28 | +from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL |
| 29 | + |
| 30 | +# Set your Langfuse credentials |
| 31 | +os.environ["LANGFUSE_PUBLIC_KEY"] = "YOUR_LANGFUSE_PUBLIC_KEY" |
| 32 | +os.environ["LANGFUSE_SECRET_KEY"] = "YOUR_LANGFUSE_SECRET_KEY" |
| 33 | + |
| 34 | +# Import OpenAI from langfuse |
| 35 | +from langfuse.openai import OpenAI |
| 36 | + |
| 37 | +# Initialize the client |
| 38 | +client = OpenAI( |
| 39 | + api_key="YOUR_OPENAI_API_KEY", # Your LLM provider API key |
| 40 | + base_url=PORTKEY_GATEWAY_URL, |
| 41 | + default_headers=createHeaders( |
| 42 | + api_key="YOUR_PORTKEY_API_KEY", |
| 43 | + virtual_key="YOUR_VIRTUAL_KEY", # Optional: Use virtual keys |
| 44 | + # config="YOUR_CONFIG_ID", # Optional: Use saved configs |
| 45 | + # trace_id="YOUR_TRACE_ID", # Optional: Custom trace ID |
| 46 | + ) |
| 47 | +) |
| 48 | + |
| 49 | +# Make a request |
| 50 | +response = client.chat.completions.create( |
| 51 | + model="gpt-4o-mini", |
| 52 | + messages=[{"role": "user", "content": "Hello, world!"}], |
| 53 | +) |
| 54 | + |
| 55 | +print(response.choices[0].message.content) |
| 56 | +``` |
| 57 | + |
| 58 | +<Note> |
| 59 | +This integration automatically logs requests to both Langfuse and Portkey, giving you observability data in both platforms. |
| 60 | +</Note> |
| 61 | + |
| 62 | +## Using Portkey Features with Langfuse |
| 63 | + |
| 64 | +### 1. Virtual Keys |
| 65 | + |
| 66 | +Virtual Keys in Portkey allow you to securely manage API keys and set usage limits. Use them with Langfuse for better security: |
| 67 | + |
| 68 | +```python |
| 69 | +from langfuse.openai import OpenAI |
| 70 | +from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL |
| 71 | + |
| 72 | +client = OpenAI( |
| 73 | + api_key="dummy_key", # Not used when virtual key is provided |
| 74 | + base_url=PORTKEY_GATEWAY_URL, |
| 75 | + default_headers=createHeaders( |
| 76 | + api_key="YOUR_PORTKEY_API_KEY", |
| 77 | + virtual_key="YOUR_VIRTUAL_KEY" |
| 78 | + ) |
| 79 | +) |
| 80 | + |
| 81 | +response = client.chat.completions.create( |
| 82 | + model="gpt-4o", |
| 83 | + messages=[{"role": "user", "content": "Explain quantum computing"}] |
| 84 | +) |
| 85 | +``` |
| 86 | + |
| 87 | +### 2. Multiple Providers |
| 88 | + |
| 89 | +Switch between 250+ LLM providers while maintaining Langfuse observability: |
| 90 | + |
| 91 | +<Tabs> |
| 92 | +<Tab title="OpenAI"> |
| 93 | +```python |
| 94 | +client = OpenAI( |
| 95 | + api_key="YOUR_OPENAI_KEY", |
| 96 | + base_url=PORTKEY_GATEWAY_URL, |
| 97 | + default_headers=createHeaders( |
| 98 | + api_key="YOUR_PORTKEY_API_KEY", |
| 99 | + provider="openai" |
| 100 | + ) |
| 101 | +) |
| 102 | +``` |
| 103 | +</Tab> |
| 104 | +<Tab title="Anthropic"> |
| 105 | +```python |
| 106 | +client = OpenAI( |
| 107 | + api_key="YOUR_ANTHROPIC_KEY", |
| 108 | + base_url=PORTKEY_GATEWAY_URL, |
| 109 | + default_headers=createHeaders( |
| 110 | + api_key="YOUR_PORTKEY_API_KEY", |
| 111 | + provider="anthropic", |
| 112 | + metadata={"model_override": "claude-3-opus-20240229"} |
| 113 | + ) |
| 114 | +) |
| 115 | +``` |
| 116 | +</Tab> |
| 117 | +<Tab title="Azure OpenAI"> |
| 118 | +```python |
| 119 | +client = OpenAI( |
| 120 | + api_key="dummy_key", |
| 121 | + base_url=PORTKEY_GATEWAY_URL, |
| 122 | + default_headers=createHeaders( |
| 123 | + api_key="YOUR_PORTKEY_API_KEY", |
| 124 | + virtual_key="YOUR_AZURE_VIRTUAL_KEY" |
| 125 | + ) |
| 126 | +) |
| 127 | +``` |
| 128 | +</Tab> |
| 129 | +</Tabs> |
| 130 | + |
| 131 | +### 3. Advanced Routing with Configs |
| 132 | + |
| 133 | +Use Portkey's config system for advanced features while tracking in Langfuse: |
| 134 | + |
| 135 | +```python |
| 136 | +# Create a config in Portkey dashboard first, then reference it |
| 137 | +client = OpenAI( |
| 138 | + api_key="dummy_key", |
| 139 | + base_url=PORTKEY_GATEWAY_URL, |
| 140 | + default_headers=createHeaders( |
| 141 | + api_key="YOUR_PORTKEY_API_KEY", |
| 142 | + config="pc-langfuse-prod" # Your saved config ID |
| 143 | + ) |
| 144 | +) |
| 145 | +``` |
| 146 | + |
| 147 | +Example config for fallback between providers: |
| 148 | +```json |
| 149 | +{ |
| 150 | + "strategy": { |
| 151 | + "mode": "fallback" |
| 152 | + }, |
| 153 | + "targets": [ |
| 154 | + { |
| 155 | + "virtual_key": "openai-key", |
| 156 | + "override_params": {"model": "gpt-4o"} |
| 157 | + }, |
| 158 | + { |
| 159 | + "virtual_key": "anthropic-key", |
| 160 | + "override_params": {"model": "claude-3-opus-20240229"} |
| 161 | + } |
| 162 | + ] |
| 163 | +} |
| 164 | +``` |
| 165 | + |
| 166 | +### 4. Caching for Cost Optimization |
| 167 | + |
| 168 | +Enable caching to reduce costs while maintaining full observability: |
| 169 | + |
| 170 | +```python |
| 171 | +config = { |
| 172 | + "cache": { |
| 173 | + "mode": "semantic", |
| 174 | + "max_age": 3600 |
| 175 | + }, |
| 176 | + "virtual_key": "YOUR_VIRTUAL_KEY" |
| 177 | +} |
| 178 | + |
| 179 | +client = OpenAI( |
| 180 | + api_key="dummy_key", |
| 181 | + base_url=PORTKEY_GATEWAY_URL, |
| 182 | + default_headers=createHeaders( |
| 183 | + api_key="YOUR_PORTKEY_API_KEY", |
| 184 | + config=config |
| 185 | + ) |
| 186 | +) |
| 187 | +``` |
| 188 | + |
| 189 | +### 5. Custom Metadata and Tracing |
| 190 | + |
| 191 | +Add custom metadata visible in both Langfuse and Portkey: |
| 192 | + |
| 193 | +```python |
| 194 | +client = OpenAI( |
| 195 | + api_key="YOUR_API_KEY", |
| 196 | + base_url=PORTKEY_GATEWAY_URL, |
| 197 | + default_headers=createHeaders( |
| 198 | + api_key="YOUR_PORTKEY_API_KEY", |
| 199 | + provider="openai", |
| 200 | + metadata={ |
| 201 | + "user_id": "user_123", |
| 202 | + "session_id": "session_456", |
| 203 | + "environment": "production" |
| 204 | + }, |
| 205 | + trace_id="langfuse-trace-001" |
| 206 | + ) |
| 207 | +) |
| 208 | +``` |
| 209 | + |
| 210 | + |
| 211 | +<CardGroup cols={3}> |
| 212 | + <Card title="Fallbacks" icon="life-ring" href="/product/ai-gateway/fallbacks"> |
| 213 | + Automatically switch to backup targets if the primary target fails. |
| 214 | + </Card> |
| 215 | + <Card title="Conditional Routing" icon="route" href="/product/ai-gateway/conditional-routing"> |
| 216 | + Route requests to different targets based on specified conditions. |
| 217 | + </Card> |
| 218 | + <Card title="Load Balancing" icon="key" href="/docs/product/ai-gateway/load-balancing"> |
| 219 | + Distribute requests across multiple targets based on defined weights. |
| 220 | + </Card> |
| 221 | + <Card title="Caching" icon="database" href="/product/ai-gateway/caching"> |
| 222 | + Enable caching of responses to improve performance and reduce costs. |
| 223 | + </Card> |
| 224 | + <Card title="Smart Retries" icon="database" href="/product/ai-gateway/retries"> |
| 225 | +Automatic retry handling with exponential backoff for failed requests |
| 226 | +</Card> |
| 227 | +<Card title="Budget Limits" icon="shield-check" href="/product/ai-gateway/virtual-keys/budget-limits"> |
| 228 | + Set and manage budget limits across teams and departments. Control costs with granular budget limits and usage tracking. |
| 229 | +</Card> |
| 230 | +</CardGroup> |
| 231 | + |
| 232 | + |
| 233 | +## Observability Features |
| 234 | + |
| 235 | +With this integration, you get: |
| 236 | + |
| 237 | +### In Langfuse: |
| 238 | +- request/response logging |
| 239 | +- Latency tracking |
| 240 | +- Token usage analytics |
| 241 | +- Cost calculation |
| 242 | +- Trace visualization |
| 243 | + |
| 244 | +### In Portkey: |
| 245 | +- Request logs with provider details |
| 246 | +- Advanced analytics across providers |
| 247 | +- Cost tracking and budgets |
| 248 | +- Performance metrics |
| 249 | +- Custom dashboards |
| 250 | +- Token usage analytics |
| 251 | + |
| 252 | + |
| 253 | +<Frame> |
| 254 | +<img src="/images/integrations/observability.png" width="600"/> |
| 255 | +</Frame> |
| 256 | + |
| 257 | + |
| 258 | + |
| 259 | +## Migration Guide |
| 260 | + |
| 261 | +If you're already using Langfuse with OpenAI, migrating to use Portkey is simple: |
| 262 | + |
| 263 | +<CodeGroup> |
| 264 | +```python Before |
| 265 | +from langfuse.openai import OpenAI |
| 266 | + |
| 267 | +client = OpenAI( |
| 268 | + api_key="YOUR_OPENAI_KEY" |
| 269 | +) |
| 270 | +``` |
| 271 | + |
| 272 | +```python After |
| 273 | +from langfuse.openai import OpenAI |
| 274 | +from portkey_ai import createHeaders, PORTKEY_GATEWAY_URL |
| 275 | + |
| 276 | +client = OpenAI( |
| 277 | + api_key="YOUR_OPENAI_KEY", |
| 278 | + base_url=PORTKEY_GATEWAY_URL, |
| 279 | + default_headers=createHeaders( |
| 280 | + api_key="YOUR_PORTKEY_API_KEY", |
| 281 | + provider="openai" |
| 282 | + ) |
| 283 | +) |
| 284 | +``` |
| 285 | +</CodeGroup> |
| 286 | + |
| 287 | +## Next Steps |
| 288 | + |
| 289 | +- [Create Virtual Keys](/product/ai-gateway/virtual-keys) for secure API key management |
| 290 | +- [Build Configs](/product/ai-gateway/configs) for advanced routing |
| 291 | +- [Set up Guardrails](/product/guardrails) for content filtering |
| 292 | +- [Implement Caching](/product/ai-gateway/cache-simple-and-semantic) for cost optimization |
| 293 | + |
| 294 | +## Resources |
| 295 | + |
| 296 | +- [Langfuse Documentation](https://langfuse.com/docs) |
| 297 | +- [Portkey AI Gateway Guide](/product/ai-gateway) |
| 298 | +- [Portkey Python SDK Reference](/api-reference/portkey-sdk-client) |
| 299 | + |
| 300 | +<Note> |
| 301 | +For enterprise support and custom features, contact our [enterprise team](https://calendly.com/portkey-ai). |
| 302 | +</Note> |
0 commit comments