|
| 1 | +--- |
| 2 | +title: "Embeddings" |
| 3 | +description: "Get embeddings from Vertex AI" |
| 4 | +--- |
| 5 | + |
| 6 | +Vertex AI offers wide ranging support for embedding text, images and videos. |
| 7 | +Portkey provides a standardized interface for embedding multiple modalities. |
| 8 | + |
| 9 | +## Embedding Text |
| 10 | +<CodeGroup> |
| 11 | + ```python Python |
| 12 | + from portkey_ai import Portkey |
| 13 | + |
| 14 | + client = Portkey( |
| 15 | + api_key="YOUR_PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") |
| 16 | + virtual_key="VIRTUAL_KEY", |
| 17 | + ) |
| 18 | + |
| 19 | + embeddings = client.embeddings.create( |
| 20 | + model="textembedding-gecko@003", |
| 21 | + input_type="classification", |
| 22 | + input="The food was delicious and the waiter...", |
| 23 | + # input=["text to embed", "more text to embed"], # if you would like to embed multiple texts |
| 24 | + ) |
| 25 | + ``` |
| 26 | + |
| 27 | + ```javascript NodeJS |
| 28 | + import { Portkey } from 'portkey-ai'; |
| 29 | + |
| 30 | + const portkey = new Portkey({ |
| 31 | + apiKey: "YOUR_API_KEY", |
| 32 | + virtualKey: "YOUR_VIRTUAL_KEY" |
| 33 | + }); |
| 34 | + |
| 35 | + const embedding = await portkey.embeddings.create({ |
| 36 | + input: 'Name the tallest buildings in Hawaii', |
| 37 | + // input: ['text to embed', 'more text to embed'], // if you would like to embed multiple texts |
| 38 | + model: 'textembedding-gecko@003' |
| 39 | + }); |
| 40 | + |
| 41 | + console.log(embedding); |
| 42 | + ``` |
| 43 | + |
| 44 | + ```sh cURL |
| 45 | + curl --location 'https://api.portkey.ai/v1/embeddings' \ |
| 46 | + --header 'Content-Type: application/json' \ |
| 47 | + --header 'x-portkey-api-key: PORTKEY_API_KEY' \ |
| 48 | + --header 'x-portkey-virtual-key: PORTKEY_VIRTUAL_KEY' \ |
| 49 | + --data-raw '{ |
| 50 | + "model": "textembedding-gecko@003", |
| 51 | + "input": [ |
| 52 | + "A HTTP 246 code is used to signify an AI response containing hallucinations or other inaccuracies", |
| 53 | + "246: Partially incorrect response" |
| 54 | + ], |
| 55 | + # "input": "Name the tallest buildings in Hawaii", |
| 56 | + "input_type": "classification" |
| 57 | + }' |
| 58 | + ``` |
| 59 | + |
| 60 | + ```python OpenAI Python |
| 61 | + from openai import OpenAI |
| 62 | + from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders |
| 63 | + |
| 64 | + portkey_client = OpenAI( |
| 65 | + api_key='NOT_REQUIRED', |
| 66 | + base_url=PORTKEY_GATEWAY_URL, |
| 67 | + default_headers=createHeaders( |
| 68 | + provider="openai", |
| 69 | + api_key="PORTKEY_API_KEY" |
| 70 | + ) |
| 71 | + ) |
| 72 | + |
| 73 | + embeddings = portkey_client.embeddings.create( |
| 74 | + model="textembedding-gecko@003", |
| 75 | + input_type="classification", |
| 76 | + input="The food was delicious and the waiter...", |
| 77 | + # input=["text to embed", "more text to embed"], # if you would like to embed multiple texts |
| 78 | + ) |
| 79 | + ``` |
| 80 | + |
| 81 | + ```js OpenAI NodeJS |
| 82 | + import OpenAI from 'openai'; // We're using the v4 SDK |
| 83 | + import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai' |
| 84 | + |
| 85 | + const portkeyClient = new OpenAI({ |
| 86 | + apiKey: 'NOT_REQUIRED', // defaults to process.env["OPENAI_API_KEY"], |
| 87 | + baseURL: PORTKEY_GATEWAY_URL, |
| 88 | + defaultHeaders: createHeaders({ |
| 89 | + provider: "vertex-ai", |
| 90 | + apiKey: "PORTKEY_API_KEY", // defaults to process.env["PORTKEY_API_KEY"] |
| 91 | + virtualKey: "PORTKEY_VIRTUAL_KEY" |
| 92 | + }) |
| 93 | + }); |
| 94 | + |
| 95 | + const embedding = await portkeyClient.embeddings.create({ |
| 96 | + input: 'Name the tallest buildings in Hawaii', |
| 97 | + // input: ['text to embed', 'more text to embed'], // if you would like to embed multiple texts |
| 98 | + model: 'textembedding-gecko@003' |
| 99 | + }); |
| 100 | + |
| 101 | + console.log(embedding); |
| 102 | + ``` |
| 103 | + |
| 104 | +</CodeGroup> |
| 105 | + |
| 106 | +## Embeddings Images |
| 107 | + |
| 108 | +<CodeGroup> |
| 109 | + ```python Python |
| 110 | + from portkey_ai import Portkey |
| 111 | + |
| 112 | + client = Portkey( |
| 113 | + api_key="YOUR_PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") |
| 114 | + virtual_key="VIRTUAL_KEY", |
| 115 | + ) |
| 116 | + |
| 117 | + embeddings = client.embeddings.create( |
| 118 | + model="multimodalembedding@001", |
| 119 | + input=[ |
| 120 | + { |
| 121 | + "text": "this is the caption of the image", |
| 122 | + "image": { |
| 123 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 124 | + # "url": "gcs://..." # if you want to use a url |
| 125 | + } |
| 126 | + } |
| 127 | + ] |
| 128 | + ) |
| 129 | + ``` |
| 130 | + |
| 131 | + ```javascript NodeJS |
| 132 | + import { Portkey } from 'portkey-ai'; |
| 133 | + |
| 134 | + const portkey = new Portkey({ |
| 135 | + apiKey: "YOUR_API_KEY", |
| 136 | + virtualKey: "YOUR_VIRTUAL_KEY" |
| 137 | + }); |
| 138 | + |
| 139 | + const embedding = await portkey.embeddings.create({ |
| 140 | + input: [ |
| 141 | + { |
| 142 | + "text": "this is the caption of the image", |
| 143 | + "image": { |
| 144 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 145 | + // "url": "gcs://..." // if you want to use a url |
| 146 | + } |
| 147 | + } |
| 148 | + ], |
| 149 | + model: 'multimodalembedding@001' |
| 150 | + }); |
| 151 | + |
| 152 | + console.log(embedding); |
| 153 | + ``` |
| 154 | + |
| 155 | + ```sh cURL |
| 156 | + curl --location 'https://api.portkey.ai/v1/embeddings' \ |
| 157 | + --header 'Content-Type: application/json' \ |
| 158 | + --header 'x-portkey-api-key: PORTKEY_API_KEY' \ |
| 159 | + --header 'x-portkey-virtual-key: PORTKEY_VIRTUAL_KEY' \ |
| 160 | + --data-raw '{ |
| 161 | + "model": "multimodalembedding@001", |
| 162 | + "input": [ |
| 163 | + { |
| 164 | + "text": "this is the caption of the image", |
| 165 | + "image": { |
| 166 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B....." |
| 167 | + # "url": "gcs://..." # if you want to use a url |
| 168 | + } |
| 169 | + } |
| 170 | + ] |
| 171 | + }' |
| 172 | + ``` |
| 173 | + |
| 174 | + ```python OpenAI Python |
| 175 | + from openai import OpenAI |
| 176 | + from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders |
| 177 | + |
| 178 | + portkey_client = OpenAI( |
| 179 | + api_key='NOT_REQUIRED', |
| 180 | + base_url=PORTKEY_GATEWAY_URL, |
| 181 | + default_headers=createHeaders( |
| 182 | + provider="openai", |
| 183 | + api_key="PORTKEY_API_KEY" |
| 184 | + ) |
| 185 | + ) |
| 186 | + |
| 187 | + embeddings = portkey_client.embeddings.create( |
| 188 | + model="multimodalembedding@001", |
| 189 | + input=[ |
| 190 | + { |
| 191 | + "text": "this is the caption of the image", |
| 192 | + "image": { |
| 193 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 194 | + # "url": "gcs://..." # if you want to use a url |
| 195 | + } |
| 196 | + } |
| 197 | + ] |
| 198 | + ) |
| 199 | + ``` |
| 200 | + |
| 201 | + ```js OpenAI NodeJS |
| 202 | + import OpenAI from 'openai'; // We're using the v4 SDK |
| 203 | + import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai' |
| 204 | + |
| 205 | + const portkeyClient = new OpenAI({ |
| 206 | + apiKey: 'NOT_REQUIRED', // defaults to process.env["OPENAI_API_KEY"], |
| 207 | + baseURL: PORTKEY_GATEWAY_URL, |
| 208 | + defaultHeaders: createHeaders({ |
| 209 | + apiKey: "PORTKEY_API_KEY", // defaults to process.env["PORTKEY_API_KEY"] |
| 210 | + virtualKey: "PORTKEY_VIRTUAL_KEY" |
| 211 | + }) |
| 212 | + }); |
| 213 | + |
| 214 | + const embedding = await portkeyClient.embeddings.create({ |
| 215 | + input: [ |
| 216 | + { |
| 217 | + "text": "this is the caption of the image", |
| 218 | + "image": { |
| 219 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 220 | + // "url": "gcs://..." // if you want to use a url |
| 221 | + } |
| 222 | + } |
| 223 | + ], |
| 224 | + model: 'multimodalembedding@001' |
| 225 | + }); |
| 226 | + |
| 227 | + console.log(embedding); |
| 228 | + ``` |
| 229 | + |
| 230 | +</CodeGroup> |
| 231 | + |
| 232 | + |
| 233 | +## Embeddings Videos |
| 234 | + |
| 235 | +<CodeGroup> |
| 236 | + ```python Python |
| 237 | + from portkey_ai import Portkey |
| 238 | + |
| 239 | + client = Portkey( |
| 240 | + api_key="YOUR_PORTKEY_API_KEY", # defaults to os.environ.get("PORTKEY_API_KEY") |
| 241 | + virtual_key="VIRTUAL_KEY", |
| 242 | + ) |
| 243 | + |
| 244 | + embeddings = client.embeddings.create( |
| 245 | + model="multimodalembedding@001", |
| 246 | + input=[ |
| 247 | + { |
| 248 | + "text": "this is the caption of the video", |
| 249 | + "video": { |
| 250 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 251 | + "start_offset": 0, |
| 252 | + "end_offset": 10, |
| 253 | + "interval": 5, |
| 254 | + # "url": "gcs://..." # if you want to use a url |
| 255 | + } |
| 256 | + } |
| 257 | + ] |
| 258 | + ) |
| 259 | + ``` |
| 260 | + ```javascript NodeJS |
| 261 | + import { Portkey } from 'portkey-ai'; |
| 262 | + |
| 263 | + const portkey = new Portkey({ |
| 264 | + apiKey: "YOUR_API_KEY", |
| 265 | + virtualKey: "YOUR_VIRTUAL_KEY" |
| 266 | + }); |
| 267 | + |
| 268 | + const embedding = await portkey.embeddings.create({ |
| 269 | + input: [ |
| 270 | + { |
| 271 | + "text": "this is the caption of the video", |
| 272 | + "video": { |
| 273 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 274 | + "start_offset": 0, |
| 275 | + "end_offset": 10, |
| 276 | + "interval": 5, |
| 277 | + // "url": "gcs://..." // if you want to use a url |
| 278 | + } |
| 279 | + } |
| 280 | + ], |
| 281 | + model: 'multimodalembedding@001' |
| 282 | + }); |
| 283 | + |
| 284 | + console.log(embedding); |
| 285 | + ``` |
| 286 | + |
| 287 | + ```sh cURL |
| 288 | + curl --location 'https://api.portkey.ai/v1/embeddings' \ |
| 289 | + --header 'Content-Type: application/json' \ |
| 290 | + --header 'x-portkey-api-key: PORTKEY_API_KEY' \ |
| 291 | + --header 'x-portkey-virtual-key: PORTKEY_VIRTUAL_KEY' \ |
| 292 | + --data-raw '{ |
| 293 | + "model": "multimodalembedding@001", |
| 294 | + "input": [ |
| 295 | + { |
| 296 | + "text": "this is the caption of the video", |
| 297 | + "video": { |
| 298 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 299 | + "start_offset": 0, |
| 300 | + "end_offset": 10, |
| 301 | + "interval": 5 |
| 302 | + # "url": "gcs://..." # if you want to use a url |
| 303 | + } |
| 304 | + } |
| 305 | + ] |
| 306 | + }' |
| 307 | + ``` |
| 308 | + |
| 309 | + ```python OpenAI Python |
| 310 | + from openai import OpenAI |
| 311 | + from portkey_ai import PORTKEY_GATEWAY_URL, createHeaders |
| 312 | + |
| 313 | + portkey_client = OpenAI( |
| 314 | + api_key='NOT_REQUIRED', |
| 315 | + base_url=PORTKEY_GATEWAY_URL, |
| 316 | + default_headers=createHeaders( |
| 317 | + provider="openai", |
| 318 | + api_key="PORTKEY_API_KEY" |
| 319 | + ) |
| 320 | + ) |
| 321 | + |
| 322 | + embeddings = portkey_client.embeddings.create( |
| 323 | + model="multimodalembedding@001", |
| 324 | + input=[ |
| 325 | + { |
| 326 | + "text": "this is the caption of the video", |
| 327 | + "video": { |
| 328 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 329 | + "start_offset": 0, |
| 330 | + "end_offset": 10, |
| 331 | + "interval": 5, |
| 332 | + # "url": "gcs://..." # if you want to use a url |
| 333 | + } |
| 334 | + } |
| 335 | + ] |
| 336 | + ) |
| 337 | + ``` |
| 338 | + |
| 339 | + ```js OpenAI NodeJS |
| 340 | + import OpenAI from 'openai'; // We're using the v4 SDK |
| 341 | + import { PORTKEY_GATEWAY_URL, createHeaders } from 'portkey-ai' |
| 342 | + |
| 343 | + const portkeyClient = new OpenAI({ |
| 344 | + apiKey: 'NOT_REQUIRED', // defaults to process.env["OPENAI_API_KEY"], |
| 345 | + baseURL: PORTKEY_GATEWAY_URL, |
| 346 | + defaultHeaders: createHeaders({ |
| 347 | + apiKey: "PORTKEY_API_KEY", // defaults to process.env["PORTKEY_API_KEY"] |
| 348 | + virtualKey: "PORTKEY_VIRTUAL_KEY" |
| 349 | + }) |
| 350 | + }); |
| 351 | + |
| 352 | + const embedding = await portkeyClient.embeddings.create({ |
| 353 | + input: [ |
| 354 | + { |
| 355 | + "text": "this is the caption of the video", |
| 356 | + "video": { |
| 357 | + "base64": "UklGRkacAABXRUJQVlA4IDqcAACQggKdASqpAn8B.....", |
| 358 | + "start_offset": 0, |
| 359 | + "end_offset": 10, |
| 360 | + "interval": 5, |
| 361 | + // "url": "gcs://..." // if you want to use a url |
| 362 | + } |
| 363 | + } |
| 364 | + ], |
| 365 | + model: 'multimodalembedding@001' |
| 366 | + }); |
| 367 | + |
| 368 | + console.log(embedding); |
| 369 | + ``` |
| 370 | + |
| 371 | +</CodeGroup> |
0 commit comments