|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Connecting a new consumer\n", |
| 8 | + "\n", |
| 9 | + "This demo shows how to use power-grid-model-ds to simulate a new consumer to be connected to the grid\n", |
| 10 | + "\n", |
| 11 | + "1. First we create an extension of the Grid objects with properties we want to use in this context\n", |
| 12 | + "2. We create a random grid structure for the purpose of the demo\n", |
| 13 | + "3. We define functions that add a new consumer to the grid and simulate its impact" |
| 14 | + ] |
| 15 | + }, |
| 16 | + { |
| 17 | + "cell_type": "code", |
| 18 | + "execution_count": null, |
| 19 | + "metadata": {}, |
| 20 | + "outputs": [], |
| 21 | + "source": [ |
| 22 | + "from dataclasses import dataclass\n", |
| 23 | + "\n", |
| 24 | + "import numpy as np\n", |
| 25 | + "from numpy.typing import NDArray\n", |
| 26 | + "\n", |
| 27 | + "from power_grid_model_ds import Grid\n", |
| 28 | + "from power_grid_model_ds.arrays import LineArray, NodeArray\n", |
| 29 | + "\n", |
| 30 | + "\n", |
| 31 | + "class ExtendedNodeArray(NodeArray):\n", |
| 32 | + " \"\"\"Extends the node array with the simulated voltage and coordinates\"\"\"\n", |
| 33 | + "\n", |
| 34 | + " _defaults = {\"u\": 0}\n", |
| 35 | + "\n", |
| 36 | + " u: NDArray[np.float64]\n", |
| 37 | + " x_coor: NDArray[np.float64]\n", |
| 38 | + " y_coor: NDArray[np.float64]\n", |
| 39 | + "\n", |
| 40 | + " @property\n", |
| 41 | + " def is_overloaded(self):\n", |
| 42 | + " return np.logical_or(self.u > 1.1 * self.u_rated, self.u < 0.9 * self.u_rated)\n", |
| 43 | + "\n", |
| 44 | + "\n", |
| 45 | + "class ExtendedLineArray(LineArray):\n", |
| 46 | + " \"\"\"Extends the line array with current output\"\"\"\n", |
| 47 | + "\n", |
| 48 | + " _defaults = {\"i_from\": 0}\n", |
| 49 | + "\n", |
| 50 | + " i_from: NDArray[np.float64]\n", |
| 51 | + "\n", |
| 52 | + " @property\n", |
| 53 | + " def is_overloaded(self):\n", |
| 54 | + " return self.i_from > self.i_n\n", |
| 55 | + "\n", |
| 56 | + "\n", |
| 57 | + "@dataclass\n", |
| 58 | + "class ExtendedGrid(Grid):\n", |
| 59 | + " node: ExtendedNodeArray\n", |
| 60 | + " line: ExtendedLineArray" |
| 61 | + ] |
| 62 | + }, |
| 63 | + { |
| 64 | + "cell_type": "code", |
| 65 | + "execution_count": null, |
| 66 | + "metadata": {}, |
| 67 | + "outputs": [], |
| 68 | + "source": [ |
| 69 | + "from power_grid_model_ds.generators import RadialGridGenerator\n", |
| 70 | + "\n", |
| 71 | + "grid_generator = RadialGridGenerator(grid_class=ExtendedGrid, nr_nodes=20, nr_sources=1, nr_nops=10)\n", |
| 72 | + "grid = grid_generator.run(seed=0)\n", |
| 73 | + "\n", |
| 74 | + "grid.set_feeder_ids()\n", |
| 75 | + "\n", |
| 76 | + "grid.node.x_coor = np.random.uniform(100, 500, len(grid.node))\n", |
| 77 | + "grid.node.y_coor = np.random.uniform(100, 500, len(grid.node))" |
| 78 | + ] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "markdown", |
| 82 | + "metadata": {}, |
| 83 | + "source": [ |
| 84 | + "First we create a new consumer, with a location and a load demand" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "code", |
| 89 | + "execution_count": null, |
| 90 | + "metadata": {}, |
| 91 | + "outputs": [], |
| 92 | + "source": [ |
| 93 | + "from power_grid_model import LoadGenType\n", |
| 94 | + "\n", |
| 95 | + "from power_grid_model_ds.arrays import SymLoadArray\n", |
| 96 | + "from power_grid_model_ds.enums import NodeType\n", |
| 97 | + "\n", |
| 98 | + "\n", |
| 99 | + "def create_new_consumer_arrays(\n", |
| 100 | + " u_rated: float, x_coor: float, y_coor: float, p_specified: float, q_specified: float\n", |
| 101 | + ") -> tuple[ExtendedNodeArray, SymLoadArray]:\n", |
| 102 | + " new_consumer = ExtendedNodeArray(\n", |
| 103 | + " u_rated=[u_rated],\n", |
| 104 | + " node_type=[NodeType.UNSPECIFIED],\n", |
| 105 | + " x_coor=[x_coor],\n", |
| 106 | + " y_coor=[y_coor],\n", |
| 107 | + " )\n", |
| 108 | + " new_consumer_load = SymLoadArray(\n", |
| 109 | + " node=[new_consumer.get_empty_value(\"id\")],\n", |
| 110 | + " status=[1],\n", |
| 111 | + " type=[LoadGenType.const_power],\n", |
| 112 | + " p_specified=[p_specified],\n", |
| 113 | + " q_specified=[q_specified],\n", |
| 114 | + " )\n", |
| 115 | + " return new_consumer, new_consumer_load\n", |
| 116 | + "\n", |
| 117 | + "\n", |
| 118 | + "new_consumer, new_consumer_load = create_new_consumer_arrays(10_500, 300, 300, 1_000_000, 200_000)" |
| 119 | + ] |
| 120 | + }, |
| 121 | + { |
| 122 | + "cell_type": "markdown", |
| 123 | + "metadata": {}, |
| 124 | + "source": [ |
| 125 | + "Now lets define some functions that add the new consumer by connecting it to the closest node" |
| 126 | + ] |
| 127 | + }, |
| 128 | + { |
| 129 | + "cell_type": "code", |
| 130 | + "execution_count": null, |
| 131 | + "metadata": {}, |
| 132 | + "outputs": [], |
| 133 | + "source": [ |
| 134 | + "from power_grid_model_ds._core.load_flow import PowerGridModelInterface\n", |
| 135 | + "\n", |
| 136 | + "R_PER_KM = 0.1\n", |
| 137 | + "X_PER_KM = 0.1\n", |
| 138 | + "\n", |
| 139 | + "\n", |
| 140 | + "def find_closest_node(grid: ExtendedGrid, x: float, y: float) -> int:\n", |
| 141 | + " dist = np.sqrt((grid.node.x_coor - x) ** 2 + (grid.node.y_coor - y) ** 2)\n", |
| 142 | + " return np.argmin(dist)\n", |
| 143 | + "\n", |
| 144 | + "\n", |
| 145 | + "def connect_new_consumer(\n", |
| 146 | + " grid: ExtendedGrid,\n", |
| 147 | + " new_consumer: ExtendedNodeArray,\n", |
| 148 | + " new_consumer_load: SymLoadArray,\n", |
| 149 | + "):\n", |
| 150 | + " closest_node_idx = find_closest_node(\n", |
| 151 | + " grid=grid,\n", |
| 152 | + " x=new_consumer.x_coor[0],\n", |
| 153 | + " y=new_consumer.y_coor[0],\n", |
| 154 | + " )\n", |
| 155 | + " closest_node = grid.node[closest_node_idx]\n", |
| 156 | + "\n", |
| 157 | + " grid.append(new_consumer)\n", |
| 158 | + " new_consumer_load.node = new_consumer.id\n", |
| 159 | + " grid.append(new_consumer_load)\n", |
| 160 | + "\n", |
| 161 | + " dist = np.sqrt((closest_node.x_coor - new_consumer.x_coor) ** 2 + (closest_node.y_coor - new_consumer.y_coor) ** 2)\n", |
| 162 | + "\n", |
| 163 | + " new_line = ExtendedLineArray(\n", |
| 164 | + " from_node=[closest_node.id],\n", |
| 165 | + " to_node=[new_consumer.id],\n", |
| 166 | + " from_status=[1],\n", |
| 167 | + " to_status=[1],\n", |
| 168 | + " r1=[R_PER_KM * dist / 1_000],\n", |
| 169 | + " x1=[X_PER_KM * dist / 1_000],\n", |
| 170 | + " c1=[0],\n", |
| 171 | + " tan1=[0],\n", |
| 172 | + " i_n=[200],\n", |
| 173 | + " )\n", |
| 174 | + " grid.append(new_line)\n", |
| 175 | + "\n", |
| 176 | + "\n", |
| 177 | + "def update_grid(grid: ExtendedGrid):\n", |
| 178 | + " # Set the new feeder ids\n", |
| 179 | + " grid.set_feeder_ids()\n", |
| 180 | + "\n", |
| 181 | + " # Update the loadflow\n", |
| 182 | + " core_interface = PowerGridModelInterface(grid=grid)\n", |
| 183 | + "\n", |
| 184 | + " core_interface.create_input_from_grid()\n", |
| 185 | + " core_interface.calculate_power_flow()\n", |
| 186 | + " core_interface.update_grid()" |
| 187 | + ] |
| 188 | + }, |
| 189 | + { |
| 190 | + "cell_type": "code", |
| 191 | + "execution_count": null, |
| 192 | + "metadata": {}, |
| 193 | + "outputs": [], |
| 194 | + "source": [ |
| 195 | + "connect_new_consumer(grid, new_consumer, new_consumer_load)\n", |
| 196 | + "update_grid(grid)" |
| 197 | + ] |
| 198 | + }, |
| 199 | + { |
| 200 | + "cell_type": "markdown", |
| 201 | + "metadata": {}, |
| 202 | + "source": [ |
| 203 | + "We can inspect the results\n", |
| 204 | + "\n", |
| 205 | + "- The grid has been extended (graph and arrays)\n", |
| 206 | + "- Load values have been updated on node and line arrays\n", |
| 207 | + "- The feeder ids have been updated for the new consumer" |
| 208 | + ] |
| 209 | + }, |
| 210 | + { |
| 211 | + "cell_type": "code", |
| 212 | + "execution_count": null, |
| 213 | + "metadata": {}, |
| 214 | + "outputs": [], |
| 215 | + "source": [ |
| 216 | + "print(grid.node)" |
| 217 | + ] |
| 218 | + }, |
| 219 | + { |
| 220 | + "cell_type": "code", |
| 221 | + "execution_count": null, |
| 222 | + "metadata": {}, |
| 223 | + "outputs": [], |
| 224 | + "source": [ |
| 225 | + "print(grid.line)" |
| 226 | + ] |
| 227 | + }, |
| 228 | + { |
| 229 | + "cell_type": "code", |
| 230 | + "execution_count": null, |
| 231 | + "metadata": {}, |
| 232 | + "outputs": [], |
| 233 | + "source": [ |
| 234 | + "print(f\"Overloaded nodes: {grid.node[grid.node.is_overloaded].id}\")\n", |
| 235 | + "print(f\"Overloaded lines: {grid.line[grid.line.is_overloaded].id}\")" |
| 236 | + ] |
| 237 | + }, |
| 238 | + { |
| 239 | + "cell_type": "markdown", |
| 240 | + "metadata": {}, |
| 241 | + "source": [ |
| 242 | + "Now simulate more consumers being added, as to see how this will lead to overloads" |
| 243 | + ] |
| 244 | + }, |
| 245 | + { |
| 246 | + "cell_type": "code", |
| 247 | + "execution_count": null, |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [], |
| 250 | + "source": [ |
| 251 | + "for _ in range(10):\n", |
| 252 | + " new_consumer, new_consumer_load = create_new_consumer_arrays(\n", |
| 253 | + " 10_500, np.random.uniform(0, 500), np.random.uniform(0, 500), 1_000_000, 200_000\n", |
| 254 | + " )\n", |
| 255 | + " connect_new_consumer(grid, new_consumer, new_consumer_load)\n", |
| 256 | + "update_grid(grid)\n", |
| 257 | + "\n", |
| 258 | + "print(f\"Overloaded nodes: {grid.node[grid.node.is_overloaded].id}\")\n", |
| 259 | + "print(f\"Overloaded lines: {grid.line[grid.line.is_overloaded].id}\")" |
| 260 | + ] |
| 261 | + } |
| 262 | + ], |
| 263 | + "metadata": { |
| 264 | + "kernelspec": { |
| 265 | + "display_name": ".venv", |
| 266 | + "language": "python", |
| 267 | + "name": "python3" |
| 268 | + }, |
| 269 | + "language_info": { |
| 270 | + "codemirror_mode": { |
| 271 | + "name": "ipython", |
| 272 | + "version": 3 |
| 273 | + }, |
| 274 | + "file_extension": ".py", |
| 275 | + "mimetype": "text/x-python", |
| 276 | + "name": "python", |
| 277 | + "nbconvert_exporter": "python", |
| 278 | + "pygments_lexer": "ipython3", |
| 279 | + "version": "3.12.6" |
| 280 | + } |
| 281 | + }, |
| 282 | + "nbformat": 4, |
| 283 | + "nbformat_minor": 2 |
| 284 | +} |
0 commit comments