|
| 1 | +// SPDX-FileCopyrightText: Contributors to the Power Grid Model project <[email protected]> |
| 2 | +// |
| 3 | +// SPDX-License-Identifier: MPL-2.0 |
| 4 | + |
| 5 | +#pragma once |
| 6 | + |
| 7 | +#include "state_queries.hpp" |
| 8 | + |
| 9 | +#include "../calculation_parameters.hpp" |
| 10 | + |
| 11 | +#include <concepts> |
| 12 | +#include <vector> |
| 13 | + |
| 14 | +namespace power_grid_model::main_core { |
| 15 | +constexpr Idx isolated_component{-1}; |
| 16 | +constexpr Idx not_connected{-1}; |
| 17 | + |
| 18 | +namespace detail { |
| 19 | +template <calculation_input_type CalcInputType> |
| 20 | +inline auto calculate_param(auto const& c, auto const&... extra_args) |
| 21 | + requires requires { |
| 22 | + { c.calc_param(extra_args...) }; |
| 23 | + } |
| 24 | +{ |
| 25 | + return c.calc_param(extra_args...); |
| 26 | +} |
| 27 | + |
| 28 | +template <calculation_input_type CalcInputType> |
| 29 | +inline auto calculate_param(auto const& c, auto const&... extra_args) |
| 30 | + requires requires { |
| 31 | + { c.template calc_param<typename CalcInputType::sym>(extra_args...) }; |
| 32 | + } |
| 33 | +{ |
| 34 | + return c.template calc_param<typename CalcInputType::sym>(extra_args...); |
| 35 | +} |
| 36 | + |
| 37 | +/** This is a heavily templated member function because it operates on many different variables of many |
| 38 | + *different types, but the essence is ever the same: filling one member (vector) of the calculation calc_input |
| 39 | + *struct (soa) with the right calculation symmetric or asymmetric calculation parameters, in the same order as |
| 40 | + *the corresponding component are stored in the component topology. There is one such struct for each sub graph |
| 41 | + * / math model and all of them are filled within the same function call (i.e. Notice that calc_input is a |
| 42 | + *vector). |
| 43 | + * |
| 44 | + * 1. For each component, check if it should be included. |
| 45 | + * By default, all component are included, except for some cases, like power sensors. For power sensors, the |
| 46 | + * list of component contains all power sensors, but the preparation should only be done for one type of |
| 47 | + *power sensors at a time. Therefore, `included` will be a lambda function, such as: |
| 48 | + * |
| 49 | + * [this](Idx i) { return state_.comp_topo->power_sensor_terminal_type[i] == MeasuredTerminalType::source; |
| 50 | + *} |
| 51 | + * |
| 52 | + * 2. Find the original component in the topology and retrieve its calculation parameters. |
| 53 | + * |
| 54 | + * 3. Fill the calculation parameters of the right math model. |
| 55 | + * |
| 56 | + * @tparam CalcStructOut |
| 57 | + * The calculation input type (soa) for the desired calculation (e.g. PowerFlowInput<sym> or |
| 58 | + *StateEstimationInput<sym>). |
| 59 | + * |
| 60 | + * @tparam CalcParamOut |
| 61 | + * The data type for the desired calculation for the given ComponentIn (e.g. SourceCalcParam<sym> or |
| 62 | + * VoltageSensorCalcParam<sym>). |
| 63 | + * |
| 64 | + * @tparam comp_vect |
| 65 | + * The (pre-allocated and resized) vector of CalcParamOuts which shall be filled with component specific |
| 66 | + * calculation parameters. Note that this is a pointer to member |
| 67 | + * |
| 68 | + * @tparam ComponentIn |
| 69 | + * The component type for which we are collecting calculation parameters |
| 70 | + * |
| 71 | + * @tparam PredicateIn |
| 72 | + * The lambda function type. The actual type depends on the captured variables, and will be |
| 73 | + *automatically deduced. |
| 74 | + * |
| 75 | + * @param component[in] |
| 76 | + * The vector of component math indices to consider (e.g. state_.topo_comp_coup->source). |
| 77 | + * When idx.group = -1, the original component is not assigned to a math model, so we can skip it. |
| 78 | + * |
| 79 | + * @param calc_input[out] |
| 80 | + * Although this variable is called `input`, it is actually the output of this function, it stored |
| 81 | + *the calculation parameters for each math model, for each component of type ComponentIn. |
| 82 | + * |
| 83 | + * @param include |
| 84 | + * A lambda function (Idx i -> bool) which returns true if the component at Idx i should be included. |
| 85 | + * The default lambda `include_all` always returns `true`. |
| 86 | + */ |
| 87 | +template <calculation_input_type CalcStructOut, typename CalcParamOut, |
| 88 | + std::vector<CalcParamOut>(CalcStructOut::*comp_vect), class ComponentIn, |
| 89 | + std::invocable<Idx> PredicateIn = IncludeAll> |
| 90 | + requires std::convertible_to<std::invoke_result_t<PredicateIn, Idx>, bool> |
| 91 | +void prepare_input(main_model_state_c auto const& state, std::vector<Idx2D> const& components, |
| 92 | + std::vector<CalcStructOut>& calc_input, PredicateIn include = include_all) { |
| 93 | + for (Idx i = 0, n = narrow_cast<Idx>(components.size()); i != n; ++i) { |
| 94 | + if (include(i)) { |
| 95 | + Idx2D const math_idx = components[i]; |
| 96 | + if (math_idx.group != isolated_component) { |
| 97 | + auto const& component = get_component_by_sequence<ComponentIn>(state, i); |
| 98 | + CalcStructOut& math_model_input = calc_input[math_idx.group]; |
| 99 | + std::vector<CalcParamOut>& math_model_input_vect = math_model_input.*comp_vect; |
| 100 | + math_model_input_vect[math_idx.pos] = calculate_param<CalcStructOut>(component); |
| 101 | + } |
| 102 | + } |
| 103 | + } |
| 104 | +} |
| 105 | + |
| 106 | +template <calculation_input_type CalcStructOut, typename CalcParamOut, |
| 107 | + std::vector<CalcParamOut>(CalcStructOut::*comp_vect), class ComponentIn, |
| 108 | + std::invocable<Idx> PredicateIn = IncludeAll> |
| 109 | + requires std::convertible_to<std::invoke_result_t<PredicateIn, Idx>, bool> |
| 110 | +void prepare_input(main_model_state_c auto const& state, std::vector<Idx2D> const& components, |
| 111 | + std::vector<CalcStructOut>& calc_input, std::invocable<ComponentIn const&> auto extra_args, |
| 112 | + PredicateIn include = include_all) { |
| 113 | + for (Idx i = 0, n = narrow_cast<Idx>(components.size()); i != n; ++i) { |
| 114 | + if (include(i)) { |
| 115 | + Idx2D const math_idx = components[i]; |
| 116 | + if (math_idx.group != isolated_component) { |
| 117 | + auto const& component = get_component_by_sequence<ComponentIn>(state, i); |
| 118 | + CalcStructOut& math_model_input = calc_input[math_idx.group]; |
| 119 | + std::vector<CalcParamOut>& math_model_input_vect = math_model_input.*comp_vect; |
| 120 | + math_model_input_vect[math_idx.pos] = calculate_param<CalcStructOut>(component, extra_args(component)); |
| 121 | + } |
| 122 | + } |
| 123 | + } |
| 124 | +} |
| 125 | + |
| 126 | +template <symmetry_tag sym, IntSVector(StateEstimationInput<sym>::*component), class Component> |
| 127 | +void prepare_input_status(main_model_state_c auto const& state, std::vector<Idx2D> const& objects, |
| 128 | + std::vector<StateEstimationInput<sym>>& input) { |
| 129 | + for (Idx i = 0, n = narrow_cast<Idx>(objects.size()); i != n; ++i) { |
| 130 | + Idx2D const math_idx = objects[i]; |
| 131 | + if (math_idx.group == isolated_component) { |
| 132 | + continue; |
| 133 | + } |
| 134 | + (input[math_idx.group].*component)[math_idx.pos] = |
| 135 | + main_core::get_component_by_sequence<Component>(state, i).status(); |
| 136 | + } |
| 137 | +} |
| 138 | +} // namespace detail |
| 139 | + |
| 140 | +template <symmetry_tag sym> |
| 141 | +std::vector<PowerFlowInput<sym>> prepare_power_flow_input(main_model_state_c auto const& state, Idx n_math_solvers) { |
| 142 | + using detail::prepare_input; |
| 143 | + |
| 144 | + std::vector<PowerFlowInput<sym>> pf_input(n_math_solvers); |
| 145 | + for (Idx i = 0; i != n_math_solvers; ++i) { |
| 146 | + pf_input[i].s_injection.resize(state.math_topology[i]->n_load_gen()); |
| 147 | + pf_input[i].source.resize(state.math_topology[i]->n_source()); |
| 148 | + } |
| 149 | + prepare_input<PowerFlowInput<sym>, DoubleComplex, &PowerFlowInput<sym>::source, Source>( |
| 150 | + state, state.topo_comp_coup->source, pf_input); |
| 151 | + |
| 152 | + prepare_input<PowerFlowInput<sym>, ComplexValue<sym>, &PowerFlowInput<sym>::s_injection, GenericLoadGen>( |
| 153 | + state, state.topo_comp_coup->load_gen, pf_input); |
| 154 | + |
| 155 | + return pf_input; |
| 156 | +} |
| 157 | + |
| 158 | +template <symmetry_tag sym> |
| 159 | +std::vector<StateEstimationInput<sym>> prepare_state_estimation_input(main_model_state_c auto const& state, |
| 160 | + Idx n_math_solvers) { |
| 161 | + using detail::prepare_input; |
| 162 | + using detail::prepare_input_status; |
| 163 | + |
| 164 | + std::vector<StateEstimationInput<sym>> se_input(n_math_solvers); |
| 165 | + |
| 166 | + for (Idx i = 0; i != n_math_solvers; ++i) { |
| 167 | + se_input[i].shunt_status.resize(state.math_topology[i]->n_shunt()); |
| 168 | + se_input[i].load_gen_status.resize(state.math_topology[i]->n_load_gen()); |
| 169 | + se_input[i].source_status.resize(state.math_topology[i]->n_source()); |
| 170 | + se_input[i].measured_voltage.resize(state.math_topology[i]->n_voltage_sensor()); |
| 171 | + se_input[i].measured_source_power.resize(state.math_topology[i]->n_source_power_sensor()); |
| 172 | + se_input[i].measured_load_gen_power.resize(state.math_topology[i]->n_load_gen_power_sensor()); |
| 173 | + se_input[i].measured_shunt_power.resize(state.math_topology[i]->n_shunt_power_power_sensor()); |
| 174 | + se_input[i].measured_branch_from_power.resize(state.math_topology[i]->n_branch_from_power_sensor()); |
| 175 | + se_input[i].measured_branch_to_power.resize(state.math_topology[i]->n_branch_to_power_sensor()); |
| 176 | + se_input[i].measured_bus_injection.resize(state.math_topology[i]->n_bus_power_sensor()); |
| 177 | + se_input[i].measured_branch_from_current.resize(state.math_topology[i]->n_branch_from_current_sensor()); |
| 178 | + se_input[i].measured_branch_to_current.resize(state.math_topology[i]->n_branch_to_current_sensor()); |
| 179 | + } |
| 180 | + |
| 181 | + prepare_input_status<sym, &StateEstimationInput<sym>::shunt_status, Shunt>(state, state.topo_comp_coup->shunt, |
| 182 | + se_input); |
| 183 | + prepare_input_status<sym, &StateEstimationInput<sym>::load_gen_status, GenericLoadGen>( |
| 184 | + state, state.topo_comp_coup->load_gen, se_input); |
| 185 | + prepare_input_status<sym, &StateEstimationInput<sym>::source_status, Source>(state, state.topo_comp_coup->source, |
| 186 | + se_input); |
| 187 | + |
| 188 | + prepare_input<StateEstimationInput<sym>, VoltageSensorCalcParam<sym>, &StateEstimationInput<sym>::measured_voltage, |
| 189 | + GenericVoltageSensor>(state, state.topo_comp_coup->voltage_sensor, se_input); |
| 190 | + prepare_input<StateEstimationInput<sym>, PowerSensorCalcParam<sym>, |
| 191 | + &StateEstimationInput<sym>::measured_source_power, GenericPowerSensor>( |
| 192 | + state, state.topo_comp_coup->power_sensor, se_input, |
| 193 | + [&state](Idx i) { return state.comp_topo->power_sensor_terminal_type[i] == MeasuredTerminalType::source; }); |
| 194 | + prepare_input<StateEstimationInput<sym>, PowerSensorCalcParam<sym>, |
| 195 | + &StateEstimationInput<sym>::measured_load_gen_power, GenericPowerSensor>( |
| 196 | + state, state.topo_comp_coup->power_sensor, se_input, [&state](Idx i) { |
| 197 | + return state.comp_topo->power_sensor_terminal_type[i] == MeasuredTerminalType::load || |
| 198 | + state.comp_topo->power_sensor_terminal_type[i] == MeasuredTerminalType::generator; |
| 199 | + }); |
| 200 | + prepare_input<StateEstimationInput<sym>, PowerSensorCalcParam<sym>, |
| 201 | + &StateEstimationInput<sym>::measured_shunt_power, GenericPowerSensor>( |
| 202 | + state, state.topo_comp_coup->power_sensor, se_input, |
| 203 | + [&state](Idx i) { return state.comp_topo->power_sensor_terminal_type[i] == MeasuredTerminalType::shunt; }); |
| 204 | + prepare_input<StateEstimationInput<sym>, PowerSensorCalcParam<sym>, |
| 205 | + &StateEstimationInput<sym>::measured_branch_from_power, GenericPowerSensor>( |
| 206 | + state, state.topo_comp_coup->power_sensor, se_input, [&state](Idx i) { |
| 207 | + using enum MeasuredTerminalType; |
| 208 | + return state.comp_topo->power_sensor_terminal_type[i] == branch_from || |
| 209 | + // all branch3 sensors are at from side in the mathematical model |
| 210 | + state.comp_topo->power_sensor_terminal_type[i] == branch3_1 || |
| 211 | + state.comp_topo->power_sensor_terminal_type[i] == branch3_2 || |
| 212 | + state.comp_topo->power_sensor_terminal_type[i] == branch3_3; |
| 213 | + }); |
| 214 | + prepare_input<StateEstimationInput<sym>, PowerSensorCalcParam<sym>, |
| 215 | + &StateEstimationInput<sym>::measured_branch_to_power, GenericPowerSensor>( |
| 216 | + state, state.topo_comp_coup->power_sensor, se_input, |
| 217 | + [&state](Idx i) { return state.comp_topo->power_sensor_terminal_type[i] == MeasuredTerminalType::branch_to; }); |
| 218 | + prepare_input<StateEstimationInput<sym>, PowerSensorCalcParam<sym>, |
| 219 | + &StateEstimationInput<sym>::measured_bus_injection, GenericPowerSensor>( |
| 220 | + state, state.topo_comp_coup->power_sensor, se_input, |
| 221 | + [&state](Idx i) { return state.comp_topo->power_sensor_terminal_type[i] == MeasuredTerminalType::node; }); |
| 222 | + |
| 223 | + prepare_input<StateEstimationInput<sym>, CurrentSensorCalcParam<sym>, |
| 224 | + &StateEstimationInput<sym>::measured_branch_from_current, GenericCurrentSensor>( |
| 225 | + state, state.topo_comp_coup->current_sensor, se_input, [&state](Idx i) { |
| 226 | + using enum MeasuredTerminalType; |
| 227 | + return state.comp_topo->current_sensor_terminal_type[i] == branch_from || |
| 228 | + // all branch3 sensors are at from side in the mathematical model |
| 229 | + state.comp_topo->current_sensor_terminal_type[i] == branch3_1 || |
| 230 | + state.comp_topo->current_sensor_terminal_type[i] == branch3_2 || |
| 231 | + state.comp_topo->current_sensor_terminal_type[i] == branch3_3; |
| 232 | + }); |
| 233 | + prepare_input<StateEstimationInput<sym>, CurrentSensorCalcParam<sym>, |
| 234 | + &StateEstimationInput<sym>::measured_branch_to_current, GenericCurrentSensor>( |
| 235 | + state, state.topo_comp_coup->current_sensor, se_input, [&state](Idx i) { |
| 236 | + return state.comp_topo->current_sensor_terminal_type[i] == MeasuredTerminalType::branch_to; |
| 237 | + }); |
| 238 | + |
| 239 | + return se_input; |
| 240 | +} |
| 241 | + |
| 242 | +template <symmetry_tag sym> |
| 243 | +std::vector<ShortCircuitInput> prepare_short_circuit_input(main_model_state_c auto const& state, |
| 244 | + ComponentToMathCoupling& comp_coup, Idx n_math_solvers, |
| 245 | + ShortCircuitVoltageScaling voltage_scaling) { |
| 246 | + using detail::prepare_input; |
| 247 | + |
| 248 | + // TODO(mgovers) split component mapping from actual preparing |
| 249 | + std::vector<IdxVector> topo_fault_indices(state.math_topology.size()); |
| 250 | + std::vector<IdxVector> topo_bus_indices(state.math_topology.size()); |
| 251 | + |
| 252 | + for (Idx fault_idx{0}; fault_idx < state.components.template size<Fault>(); ++fault_idx) { |
| 253 | + auto const& fault = state.components.template get_item_by_seq<Fault>(fault_idx); |
| 254 | + if (fault.status()) { |
| 255 | + auto const node_idx = state.components.template get_seq<Node>(fault.get_fault_object()); |
| 256 | + auto const topo_bus_idx = state.topo_comp_coup->node[node_idx]; |
| 257 | + |
| 258 | + if (topo_bus_idx.group >= 0) { // Consider non-isolated objects only |
| 259 | + topo_fault_indices[topo_bus_idx.group].push_back(fault_idx); |
| 260 | + topo_bus_indices[topo_bus_idx.group].push_back(topo_bus_idx.pos); |
| 261 | + } |
| 262 | + } |
| 263 | + } |
| 264 | + |
| 265 | + auto fault_coup = std::vector<Idx2D>(state.components.template size<Fault>(), |
| 266 | + Idx2D{.group = isolated_component, .pos = not_connected}); |
| 267 | + std::vector<ShortCircuitInput> sc_input(n_math_solvers); |
| 268 | + |
| 269 | + for (Idx i = 0; i != n_math_solvers; ++i) { |
| 270 | + auto map = build_dense_mapping(topo_bus_indices[i], state.math_topology[i]->n_bus()); |
| 271 | + |
| 272 | + for (Idx reordered_idx{0}; reordered_idx < static_cast<Idx>(map.reorder.size()); ++reordered_idx) { |
| 273 | + fault_coup[topo_fault_indices[i][map.reorder[reordered_idx]]] = Idx2D{.group = i, .pos = reordered_idx}; |
| 274 | + } |
| 275 | + |
| 276 | + sc_input[i].fault_buses = {from_dense, std::move(map.indvector), state.math_topology[i]->n_bus()}; |
| 277 | + sc_input[i].faults.resize(state.components.template size<Fault>()); |
| 278 | + sc_input[i].source.resize(state.math_topology[i]->n_source()); |
| 279 | + } |
| 280 | + |
| 281 | + comp_coup = ComponentToMathCoupling{.fault = std::move(fault_coup)}; |
| 282 | + |
| 283 | + prepare_input<ShortCircuitInput, FaultCalcParam, &ShortCircuitInput::faults, Fault>( |
| 284 | + state, comp_coup.fault, sc_input, [&state](Fault const& fault) { |
| 285 | + return state.components.template get_item<Node>(fault.get_fault_object()).u_rated(); |
| 286 | + }); |
| 287 | + prepare_input<ShortCircuitInput, DoubleComplex, &ShortCircuitInput::source, Source>( |
| 288 | + state, state.topo_comp_coup->source, sc_input, [&state, voltage_scaling](Source const& source) { |
| 289 | + return std::pair{state.components.template get_item<Node>(source.node()).u_rated(), voltage_scaling}; |
| 290 | + }); |
| 291 | + |
| 292 | + return sc_input; |
| 293 | +} |
| 294 | +} // namespace power_grid_model::main_core |
0 commit comments