|
| 1 | + |
| 2 | +/* |
| 3 | + Description: Unique Paths |
| 4 | +
|
| 5 | + A robot is located at the top-left corner of an m x n grid. |
| 6 | + The robot can only move either down or right at any point in time. |
| 7 | +
|
| 8 | + The robot is trying to reach the bottom-right corner of the grid. |
| 9 | + How many possible unique paths are there? |
| 10 | +
|
| 11 | + Example: |
| 12 | + Input: m = 3, n = 7 |
| 13 | + Output: 28 |
| 14 | +*/ |
| 15 | + |
| 16 | +public class unique_paths { |
| 17 | + |
| 18 | + // ----------------------------------------------------------- |
| 19 | + // 1. BRUTE FORCE (Recursive) |
| 20 | + // ----------------------------------------------------------- |
| 21 | + // Idea: |
| 22 | + // From any cell (i, j), you can move either: |
| 23 | + // → Right (i, j+1) |
| 24 | + // → Down (i+1, j) |
| 25 | + // |
| 26 | + // So total paths = paths from right + paths from down. |
| 27 | + // |
| 28 | + // Base cases: |
| 29 | + // - If we reach the last row or last column, there’s only 1 path. |
| 30 | + // |
| 31 | + // Time Complexity: O(2^(m+n)) (exponential) |
| 32 | + // Space Complexity: O(m + n) (recursion call stack) |
| 33 | + public static int uniquePathsBrute(int m, int n) { |
| 34 | + // Base case: if we are at the bottom or right edge, only one path |
| 35 | + if (m == 1 || n == 1) return 1; |
| 36 | + |
| 37 | + // Recursive calls: go down and right |
| 38 | + return uniquePathsBrute(m - 1, n) + uniquePathsBrute(m, n - 1); |
| 39 | + } |
| 40 | + |
| 41 | + |
| 42 | + // ----------------------------------------------------------- |
| 43 | + // 2. OPTIMIZED DP (Bottom-Up Tabulation) |
| 44 | + // ----------------------------------------------------------- |
| 45 | + // Idea: |
| 46 | + // Each cell [i][j] represents number of ways to reach that cell. |
| 47 | + // You can come either from the top [i-1][j] or from the left [i][j-1]. |
| 48 | + // |
| 49 | + // dp[i][j] = dp[i-1][j] + dp[i][j-1] |
| 50 | + // |
| 51 | + // Base case: |
| 52 | + // - First row and first column have only 1 way to reach. |
| 53 | + // |
| 54 | + // Time Complexity: O(m * n) |
| 55 | + // Space Complexity: O(m * n) |
| 56 | + public static int uniquePathsDP(int m, int n) { |
| 57 | + int[][] dp = new int[m][n]; |
| 58 | + |
| 59 | + // Fill the first row and first column with 1 |
| 60 | + for (int i = 0; i < m; i++) dp[i][0] = 1; |
| 61 | + for (int j = 0; j < n; j++) dp[0][j] = 1; |
| 62 | + |
| 63 | + // Fill remaining cells using the recurrence relation |
| 64 | + for (int i = 1; i < m; i++) { |
| 65 | + for (int j = 1; j < n; j++) { |
| 66 | + dp[i][j] = dp[i - 1][j] + dp[i][j - 1]; |
| 67 | + } |
| 68 | + } |
| 69 | + |
| 70 | + return dp[m - 1][n - 1]; |
| 71 | + } |
| 72 | + |
| 73 | + |
| 74 | + // ----------------------------------------------------------- |
| 75 | + // 3. OPTIMIZED (Space-Optimized DP) |
| 76 | + // ----------------------------------------------------------- |
| 77 | + // Observation: |
| 78 | + // We only need the previous row to calculate the current row. |
| 79 | + // |
| 80 | + // Use a 1D array instead of 2D. |
| 81 | + // |
| 82 | + // Time Complexity: O(m * n) |
| 83 | + // Space Complexity: O(n) |
| 84 | + public static int uniquePathsOptimized(int m, int n) { |
| 85 | + int[] dp = new int[n]; |
| 86 | + |
| 87 | + // Initialize first row as 1 |
| 88 | + for (int j = 0; j < n; j++) dp[j] = 1; |
| 89 | + |
| 90 | + // Update dp for each subsequent row |
| 91 | + for (int i = 1; i < m; i++) { |
| 92 | + for (int j = 1; j < n; j++) { |
| 93 | + dp[j] += dp[j - 1]; |
| 94 | + } |
| 95 | + } |
| 96 | + |
| 97 | + return dp[n - 1]; |
| 98 | + } |
| 99 | + |
| 100 | + |
| 101 | + // ----------------------------------------------------------- |
| 102 | + // MAIN METHOD (Test all versions) |
| 103 | + // ----------------------------------------------------------- |
| 104 | + public static void main(String[] args) { |
| 105 | + int m = 3, n = 7; // Example grid size |
| 106 | + |
| 107 | + System.out.println("Brute Force Result: " + uniquePathsBrute(m, n)); |
| 108 | + System.out.println("DP Result: " + uniquePathsDP(m, n)); |
| 109 | + System.out.println("Optimized Result: " + uniquePathsOptimized(m, n)); |
| 110 | + } |
| 111 | +} |
0 commit comments