|
| 1 | +// KruskalMST.go |
| 2 | +// |
| 3 | +// Kruskal's Algorithm - Minimum Spanning Tree (numeric node IDs) |
| 4 | +// |
| 5 | +// Description: |
| 6 | +// Kruskal's algorithm finds a minimum spanning tree (MST) of a connected, |
| 7 | +// undirected, weighted graph by sorting edges and adding them if they |
| 8 | +// connect different components (using union-find). |
| 9 | +// |
| 10 | +// Purpose / Use cases: |
| 11 | +// - Compute MST and its total weight. |
| 12 | +// - Useful for network design, clustering approximations, etc. |
| 13 | +// |
| 14 | +// Approach / Methodology: |
| 15 | +// - Represent undirected weighted graph with adjacency list and an edges slice. |
| 16 | +// - Sort all unique undirected edges by (weight, u, v). |
| 17 | +// - Use Union-Find to pick edges that join different components. |
| 18 | +// - If after processing all edges the MST contains V-1 edges, return it; |
| 19 | +// otherwise the graph was disconnected and no spanning tree exists. |
| 20 | +// |
| 21 | +// Complexity Analysis: |
| 22 | +// - Time: O(E log E) due to sorting + near-constant union-find ops. |
| 23 | +// - Space: O(E + V) |
| 24 | +// |
| 25 | +// File contents: |
| 26 | +// - Graph type and methods (AddEdge, AddNode). |
| 27 | +// - Union-Find implementation. |
| 28 | +// - Kruskal() that returns []MEdge (MST) and total weight, or nil if not found. |
| 29 | +// - Tests print MST after each test and indicate pass/fail. |
| 30 | + |
| 31 | +package main |
| 32 | + |
| 33 | +import ( |
| 34 | + "fmt" |
| 35 | + "os" |
| 36 | + "sort" |
| 37 | + "strconv" |
| 38 | +) |
| 39 | + |
| 40 | +// MEdge represents an undirected weighted edge (u -- weight -- v). |
| 41 | +type MEdge struct { |
| 42 | + U, V int |
| 43 | + Weight int |
| 44 | +} |
| 45 | + |
| 46 | +// Graph represents an undirected weighted graph with integer node IDs. |
| 47 | +type Graph struct { |
| 48 | + adj map[int][]MEdge // adjacency list: node -> list of neighbor edges |
| 49 | + edges []MEdge // unique undirected edges (stored with U < V) |
| 50 | +} |
| 51 | + |
| 52 | +// NewGraph creates and returns an empty Graph. |
| 53 | +func NewGraph() *Graph { |
| 54 | + return &Graph{ |
| 55 | + adj: make(map[int][]MEdge), |
| 56 | + edges: []MEdge{}, |
| 57 | + } |
| 58 | +} |
| 59 | + |
| 60 | +// AddNode ensures a node entry exists in the adjacency map. |
| 61 | +func (g *Graph) AddNode(id int) { |
| 62 | + if _, ok := g.adj[id]; !ok { |
| 63 | + g.adj[id] = []MEdge{} |
| 64 | + } |
| 65 | +} |
| 66 | + |
| 67 | +// AddEdge adds an undirected weighted edge between a and b. |
| 68 | +// If nodes don't exist yet they are created automatically. |
| 69 | +// Edges slice stores each undirected edge exactly once with U < V to avoid duplicates. |
| 70 | +func (g *Graph) AddEdge(a, b, w int) { |
| 71 | + g.AddNode(a) |
| 72 | + g.AddNode(b) |
| 73 | + // Add adjacency entries for traversal convenience (both directions) |
| 74 | + g.adj[a] = append(g.adj[a], MEdge{U: a, V: b, Weight: w}) |
| 75 | + g.adj[b] = append(g.adj[b], MEdge{U: b, V: a, Weight: w}) |
| 76 | + |
| 77 | + // Store unique undirected edge normalized so U < V |
| 78 | + u, v := a, b |
| 79 | + if u > v { |
| 80 | + u, v = v, u |
| 81 | + } |
| 82 | + g.edges = append(g.edges, MEdge{U: u, V: v, Weight: w}) |
| 83 | +} |
| 84 | + |
| 85 | +// -------- Union-Find (Disjoint Set) -------- |
| 86 | + |
| 87 | +type UnionFind struct { |
| 88 | + parent map[int]int |
| 89 | + rank map[int]int |
| 90 | +} |
| 91 | + |
| 92 | +func NewUnionFind(nodes []int) *UnionFind { |
| 93 | + uf := &UnionFind{ |
| 94 | + parent: make(map[int]int, len(nodes)), |
| 95 | + rank: make(map[int]int, len(nodes)), |
| 96 | + } |
| 97 | + for _, n := range nodes { |
| 98 | + uf.parent[n] = n |
| 99 | + uf.rank[n] = 0 |
| 100 | + } |
| 101 | + return uf |
| 102 | +} |
| 103 | + |
| 104 | +func (uf *UnionFind) Find(x int) int { |
| 105 | + // path compression |
| 106 | + if uf.parent[x] != x { |
| 107 | + uf.parent[x] = uf.Find(uf.parent[x]) |
| 108 | + } |
| 109 | + return uf.parent[x] |
| 110 | +} |
| 111 | + |
| 112 | +func (uf *UnionFind) Union(x, y int) bool { |
| 113 | + rx := uf.Find(x) |
| 114 | + ry := uf.Find(y) |
| 115 | + if rx == ry { |
| 116 | + return false |
| 117 | + } |
| 118 | + // union by rank |
| 119 | + if uf.rank[rx] < uf.rank[ry] { |
| 120 | + uf.parent[rx] = ry |
| 121 | + } else if uf.rank[ry] < uf.rank[rx] { |
| 122 | + uf.parent[ry] = rx |
| 123 | + } else { |
| 124 | + uf.parent[ry] = rx |
| 125 | + uf.rank[rx]++ |
| 126 | + } |
| 127 | + return true |
| 128 | +} |
| 129 | + |
| 130 | +// -------- Kruskal's algorithm -------- |
| 131 | + |
| 132 | +// Kruskal computes an MST of the whole graph. |
| 133 | +// Returns (mstEdges, totalWeight). |
| 134 | +// If the graph is empty -> returns nil,0. |
| 135 | +// If the graph has exactly 1 node -> returns empty MST slice and weight 0. |
| 136 | +// If the graph is disconnected -> returns nil,0. |
| 137 | +func (g *Graph) Kruskal() ([]MEdge, int) { |
| 138 | + if len(g.adj) == 0 { |
| 139 | + return nil, 0 |
| 140 | + } |
| 141 | + |
| 142 | + // Prepare nodes list for union-find |
| 143 | + nodes := make([]int, 0, len(g.adj)) |
| 144 | + for n := range g.adj { |
| 145 | + nodes = append(nodes, n) |
| 146 | + } |
| 147 | + |
| 148 | + // Sort edges by (weight, u, v) deterministically |
| 149 | + edges := make([]MEdge, len(g.edges)) |
| 150 | + copy(edges, g.edges) |
| 151 | + sort.Slice(edges, func(i, j int) bool { |
| 152 | + if edges[i].Weight != edges[j].Weight { |
| 153 | + return edges[i].Weight < edges[j].Weight |
| 154 | + } |
| 155 | + if edges[i].U != edges[j].U { |
| 156 | + return edges[i].U < edges[j].U |
| 157 | + } |
| 158 | + return edges[i].V < edges[j].V |
| 159 | + }) |
| 160 | + |
| 161 | + uf := NewUnionFind(nodes) |
| 162 | + mst := make([]MEdge, 0, len(g.adj)-1) |
| 163 | + total := 0 |
| 164 | + |
| 165 | + for _, e := range edges { |
| 166 | + if uf.Find(e.U) != uf.Find(e.V) { |
| 167 | + uf.Union(e.U, e.V) |
| 168 | + mst = append(mst, e) |
| 169 | + total += e.Weight |
| 170 | + } |
| 171 | + // quick exit: if mst has V-1 edges we can stop early |
| 172 | + if len(mst) == len(g.adj)-1 { |
| 173 | + break |
| 174 | + } |
| 175 | + } |
| 176 | + |
| 177 | + // Check if we built a spanning tree |
| 178 | + if len(mst) != len(g.adj)-1 { |
| 179 | + // Special-case: single node graph -> mst len == 0 and len(adj)-1 == 0 -> OK |
| 180 | + if len(g.adj) == 1 && len(mst) == 0 { |
| 181 | + return mst, total |
| 182 | + } |
| 183 | + return nil, 0 |
| 184 | + } |
| 185 | + return mst, total |
| 186 | +} |
| 187 | + |
| 188 | +// -------- helpers for tests and comparison -------- |
| 189 | + |
| 190 | +// normalizeEdgeKey returns a canonical string key for an undirected edge+weight |
| 191 | +// (min,max,weight) so we can compare MST edge sets ignoring order. |
| 192 | +func normalizeEdgeKey(e MEdge) string { |
| 193 | + u, v := e.U, e.V |
| 194 | + if u > v { |
| 195 | + u, v = v, u |
| 196 | + } |
| 197 | + return fmt.Sprintf("%d-%d-%d", u, v, e.Weight) |
| 198 | +} |
| 199 | + |
| 200 | +// edgesEqualSet checks whether two edge slices represent the same undirected set |
| 201 | +// (order-insensitive). Nil == Nil; nil != empty slice. |
| 202 | +func edgesEqualSet(a []MEdge, b []MEdge) bool { |
| 203 | + if a == nil && b == nil { |
| 204 | + return true |
| 205 | + } |
| 206 | + if (a == nil) != (b == nil) { |
| 207 | + return false |
| 208 | + } |
| 209 | + if len(a) != len(b) { |
| 210 | + return false |
| 211 | + } |
| 212 | + m := make(map[string]int) |
| 213 | + for _, e := range a { |
| 214 | + m[normalizeEdgeKey(e)]++ |
| 215 | + } |
| 216 | + for _, e := range b { |
| 217 | + k := normalizeEdgeKey(e) |
| 218 | + if m[k] == 0 { |
| 219 | + return false |
| 220 | + } |
| 221 | + m[k]-- |
| 222 | + } |
| 223 | + for _, v := range m { |
| 224 | + if v != 0 { |
| 225 | + return false |
| 226 | + } |
| 227 | + } |
| 228 | + return true |
| 229 | +} |
| 230 | + |
| 231 | +// sortEdgesForPrint returns a stable, human-friendly ordering for printing (u,v,w) by u,v,w. |
| 232 | +func sortEdgesForPrint(edges []MEdge) []MEdge { |
| 233 | + cp := make([]MEdge, len(edges)) |
| 234 | + copy(cp, edges) |
| 235 | + sort.Slice(cp, func(i, j int) bool { |
| 236 | + if cp[i].U == cp[j].U { |
| 237 | + if cp[i].V == cp[j].V { |
| 238 | + return cp[i].Weight < cp[j].Weight |
| 239 | + } |
| 240 | + return cp[i].V < cp[j].V |
| 241 | + } |
| 242 | + return cp[i].U < cp[j].U |
| 243 | + }) |
| 244 | + return cp |
| 245 | +} |
| 246 | + |
| 247 | +// printMST prints MST edges and total weight in a readable way. |
| 248 | +func printMST(mst []MEdge, total int) { |
| 249 | + if mst == nil { |
| 250 | + fmt.Printf("MST: nil (graph empty or disconnected)\n") |
| 251 | + return |
| 252 | + } |
| 253 | + if len(mst) == 0 { |
| 254 | + fmt.Printf("MST: (no edges) total weight = %d\n", total) |
| 255 | + return |
| 256 | + } |
| 257 | + s := sortEdgesForPrint(mst) |
| 258 | + fmt.Printf("MST edges (u --w--> v):\n") |
| 259 | + for _, e := range s { |
| 260 | + fmt.Printf(" %d --%d--> %d\n", e.U, e.Weight, e.V) |
| 261 | + } |
| 262 | + fmt.Printf("Total weight = %d\n", total) |
| 263 | +} |
| 264 | + |
| 265 | +// expect checks result against expected and prints pass/fail (and MST). |
| 266 | +func expect(got []MEdge, gotTotal int, expected []MEdge, expectedTotal int, testName string) { |
| 267 | + fmt.Printf("%s - Computed MST:\n", testName) |
| 268 | + printMST(got, gotTotal) |
| 269 | + fmt.Println("Expected MST:") |
| 270 | + printMST(expected, expectedTotal) |
| 271 | + |
| 272 | + pass := edgesEqualSet(got, expected) && (got == nil && expected == nil || gotTotal == expectedTotal) |
| 273 | + if pass { |
| 274 | + fmt.Printf("[PASS] %s\n\n", testName) |
| 275 | + } else { |
| 276 | + fmt.Printf("[FAIL] %s\n\n", testName) |
| 277 | + } |
| 278 | +} |
| 279 | + |
| 280 | +// runTests builds small weighted graphs and runs deterministic tests. |
| 281 | +func runTests() { |
| 282 | + fmt.Println("Kruskal's Algorithm Tests (numeric nodes)\n") |
| 283 | + |
| 284 | + // Test Graph 1: same sample as used before |
| 285 | + // Nodes: 1..6 |
| 286 | + // edges: |
| 287 | + // 1-2:3, 1-3:1, 2-3:7, 2-4:5, 3-4:2, 3-5:4, 4-5:6, 4-6:8, 5-6:9 |
| 288 | + // Known MST (one valid MST): edges |
| 289 | + // (1-3,1), (3-4,2), (1-2,3), (3-5,4), (4-6,8) total = 18 |
| 290 | + g1 := NewGraph() |
| 291 | + g1.AddEdge(1, 2, 3) |
| 292 | + g1.AddEdge(1, 3, 1) |
| 293 | + g1.AddEdge(2, 3, 7) |
| 294 | + g1.AddEdge(2, 4, 5) |
| 295 | + g1.AddEdge(3, 4, 2) |
| 296 | + g1.AddEdge(3, 5, 4) |
| 297 | + g1.AddEdge(4, 5, 6) |
| 298 | + g1.AddEdge(4, 6, 8) |
| 299 | + g1.AddEdge(5, 6, 9) |
| 300 | + |
| 301 | + expected1 := []MEdge{ |
| 302 | + {U: 1, V: 3, Weight: 1}, |
| 303 | + {U: 3, V: 4, Weight: 2}, |
| 304 | + {U: 1, V: 2, Weight: 3}, |
| 305 | + {U: 3, V: 5, Weight: 4}, |
| 306 | + {U: 4, V: 6, Weight: 8}, |
| 307 | + } |
| 308 | + got1, tot1 := g1.Kruskal() |
| 309 | + expect(got1, tot1, expected1, 18, "Test 1: sample graph") |
| 310 | + |
| 311 | + // Test 2: same graph, ensure result is independent of edge insertion order |
| 312 | + // Rebuild with different insertion sequence (but same edges) |
| 313 | + g1b := NewGraph() |
| 314 | + g1b.AddEdge(4, 6, 8) |
| 315 | + g1b.AddEdge(5, 6, 9) |
| 316 | + g1b.AddEdge(1, 3, 1) |
| 317 | + g1b.AddEdge(3, 4, 2) |
| 318 | + g1b.AddEdge(1, 2, 3) |
| 319 | + g1b.AddEdge(3, 5, 4) |
| 320 | + g1b.AddEdge(4, 5, 6) |
| 321 | + g1b.AddEdge(2, 4, 5) |
| 322 | + g1b.AddEdge(2, 3, 7) |
| 323 | + got2, tot2 := g1b.Kruskal() |
| 324 | + expect(got2, tot2, expected1, 18, "Test 2: sample graph (different insertion order)") |
| 325 | + |
| 326 | + // Test 3: disconnected graph -> no spanning tree (nil expected) |
| 327 | + g2 := NewGraph() |
| 328 | + g2.AddEdge(1, 2, 1) |
| 329 | + g2.AddEdge(3, 4, 2) |
| 330 | + got3, tot3 := g2.Kruskal() |
| 331 | + expect(got3, tot3, nil, 0, "Test 3: disconnected graph (expect nil)") |
| 332 | + |
| 333 | + // Test 4: single isolated node (node exists but no edges) -> MST is empty edges, total=0 |
| 334 | + g3 := NewGraph() |
| 335 | + g3.AddNode(7) |
| 336 | + got4, tot4 := g3.Kruskal() |
| 337 | + expect(got4, tot4, []MEdge{}, 0, "Test 4: single isolated node => empty MST") |
| 338 | + |
| 339 | + // Test 5: empty graph => nil |
| 340 | + empty := NewGraph() |
| 341 | + got5, tot5 := empty.Kruskal() |
| 342 | + expect(got5, tot5, nil, 0, "Test 5: empty graph => nil") |
| 343 | + |
| 344 | + fmt.Println("Tests completed.") |
| 345 | +} |
| 346 | + |
| 347 | +func main() { |
| 348 | + // CLI: if an integer arg provided, run Kruskal on the sample graph and print MST. |
| 349 | + if len(os.Args) > 1 { |
| 350 | + _, err := strconv.Atoi(os.Args[1]) |
| 351 | + if err != nil { |
| 352 | + fmt.Printf("Invalid arg. Provide integer (ignored for Kruskal CLI example).\n") |
| 353 | + return |
| 354 | + } |
| 355 | + // build sample graph (same as Test 1) |
| 356 | + g := NewGraph() |
| 357 | + g.AddEdge(1, 2, 3) |
| 358 | + g.AddEdge(1, 3, 1) |
| 359 | + g.AddEdge(2, 3, 7) |
| 360 | + g.AddEdge(2, 4, 5) |
| 361 | + g.AddEdge(3, 4, 2) |
| 362 | + g.AddEdge(3, 5, 4) |
| 363 | + g.AddEdge(4, 5, 6) |
| 364 | + g.AddEdge(4, 6, 8) |
| 365 | + g.AddEdge(5, 6, 9) |
| 366 | + |
| 367 | + mst, total := g.Kruskal() |
| 368 | + fmt.Printf("Kruskal's MST for sample graph:\n") |
| 369 | + printMST(mst, total) |
| 370 | + return |
| 371 | + } |
| 372 | + |
| 373 | + // default: run tests |
| 374 | + runTests() |
| 375 | +} |
0 commit comments