|
| 1 | +#include <iostream> |
| 2 | +#include <vector> |
| 3 | +#include <limits> |
| 4 | +#include <algorithm> |
| 5 | + |
| 6 | +#define INF std::numeric_limits<int>::max() |
| 7 | + |
| 8 | +using namespace std; |
| 9 | + |
| 10 | +// Function to find the vertex with the minimum distance |
| 11 | +// that has not yet been included in the shortest path tree |
| 12 | +int Min_Distance(const vector<int>& dist, const vector<bool>& visited) { |
| 13 | + int min = INF, min_index; |
| 14 | + for (int v = 0; v < dist.size(); ++v) { |
| 15 | + if (!visited[v] && dist[v] <= min) { |
| 16 | + min = dist[v]; |
| 17 | + min_index = v; |
| 18 | + } |
| 19 | + } |
| 20 | + return min_index; |
| 21 | +} |
| 22 | + |
| 23 | +// Function to perform Dijkstra's algorithm on the modified graph |
| 24 | +void Dijkstra_Algorithm(const vector<vector<int>>& graph, const vector<vector<int>>& altered_graph, int source) { |
| 25 | + int V = graph.size(); // Number of vertices |
| 26 | + vector<int> dist(V, INF); // Distance from source to each vertex |
| 27 | + vector<bool> visited(V, false); // Track visited vertices |
| 28 | + |
| 29 | + dist[source] = 0; // Distance to source itself is 0 |
| 30 | + |
| 31 | + // Compute shortest path for all vertices |
| 32 | + for (int count = 0; count < V - 1; ++count) { |
| 33 | + // Select the vertex with the minimum distance that hasn't been visited |
| 34 | + int u = Min_Distance(dist, visited); |
| 35 | + visited[u] = true; // Mark this vertex as visited |
| 36 | + |
| 37 | + // Update the distance value of the adjacent vertices of the selected vertex |
| 38 | + for (int v = 0; v < V; ++v) { |
| 39 | + if (!visited[v] && graph[u][v] != 0 && dist[u] != INF && dist[u] + altered_graph[u][v] < dist[v]) { |
| 40 | + dist[v] = dist[u] + altered_graph[u][v]; |
| 41 | + } |
| 42 | + } |
| 43 | + } |
| 44 | + |
| 45 | + // Print the shortest distances from the source |
| 46 | + cout << "Shortest Distance from vertex " << source << ":\n"; |
| 47 | + for (int i = 0; i < V; ++i) { |
| 48 | + cout << "Vertex " << i << ": " << (dist[i] == INF ? "INF" : to_string(dist[i])) << endl; |
| 49 | + } |
| 50 | +} |
| 51 | + |
| 52 | +// Function to perform Bellman-Ford algorithm to find shortest distances |
| 53 | +// from a source vertex to all other vertices |
| 54 | +vector<int> BellmanFord_Algorithm(const vector<vector<int>>& edges, int V) { |
| 55 | + vector<int> dist(V + 1, INF); // Distance from source to each vertex |
| 56 | + dist[V] = 0; // Distance to the new source vertex (added vertex) is 0 |
| 57 | + |
| 58 | + // Add a new source vertex to the graph and connect it to all original vertices with 0 weight edges |
| 59 | + vector<vector<int>> edges_with_extra(edges); |
| 60 | + for (int i = 0; i < V; ++i) { |
| 61 | + edges_with_extra.push_back({V, i, 0}); |
| 62 | + } |
| 63 | + |
| 64 | + // Relax all edges |V| - 1 times |
| 65 | + for (int i = 0; i < V; ++i) { |
| 66 | + for (const auto& edge : edges_with_extra) { |
| 67 | + if (dist[edge[0]] != INF && dist[edge[0]] + edge[2] < dist[edge[1]]) { |
| 68 | + dist[edge[1]] = dist[edge[0]] + edge[2]; |
| 69 | + } |
| 70 | + } |
| 71 | + } |
| 72 | + return vector<int>(dist.begin(), dist.begin() + V); // Return distances excluding the new source vertex |
| 73 | +} |
| 74 | + |
| 75 | +// Function to implement Johnson's Algorithm |
| 76 | +void JohnsonAlgorithm(const vector<vector<int>>& graph) { |
| 77 | + int V = graph.size(); // Number of vertices |
| 78 | + vector<vector<int>> edges; |
| 79 | + |
| 80 | + // Collect all edges from the graph |
| 81 | + for (int i = 0; i < V; ++i) { |
| 82 | + for (int j = 0; j < V; ++j) { |
| 83 | + if (graph[i][j] != 0) { |
| 84 | + edges.push_back({i, j, graph[i][j]}); |
| 85 | + } |
| 86 | + } |
| 87 | + } |
| 88 | + |
| 89 | + // Get the modified weights from Bellman-Ford algorithm |
| 90 | + vector<int> altered_weights = BellmanFord_Algorithm(edges, V); |
| 91 | + vector<vector<int>> altered_graph(V, vector<int>(V, 0)); |
| 92 | + |
| 93 | + // Modify the weights of the edges to remove negative weights |
| 94 | + for (int i = 0; i < V; ++i) { |
| 95 | + for (int j = 0; j < V; ++j) { |
| 96 | + if (graph[i][j] != 0) { |
| 97 | + altered_graph[i][j] = graph[i][j] + altered_weights[i] - altered_weights[j]; |
| 98 | + } |
| 99 | + } |
| 100 | + } |
| 101 | + |
| 102 | + // Print the modified graph with re-weighted edges |
| 103 | + cout << "Modified Graph:\n"; |
| 104 | + for (const auto& row : altered_graph) { |
| 105 | + for (int weight : row) { |
| 106 | + cout << weight << ' '; |
| 107 | + } |
| 108 | + cout << endl; |
| 109 | + } |
| 110 | + |
| 111 | + // Run Dijkstra's algorithm for every vertex as the source |
| 112 | + for (int source = 0; source < V; ++source) { |
| 113 | + cout << "\nShortest Distance with vertex " << source << " as the source:\n"; |
| 114 | + Dijkstra_Algorithm(graph, altered_graph, source); |
| 115 | + } |
| 116 | +} |
| 117 | + |
| 118 | +// Main function to test the Johnson's Algorithm implementation |
| 119 | +int main() { |
| 120 | + // Define a graph with possible negative weights |
| 121 | + vector<vector<int>> graph = { |
| 122 | + {0, -5, 2, 3}, |
| 123 | + {0, 0, 4, 0}, |
| 124 | + {0, 0, 0, 1}, |
| 125 | + {0, 0, 0, 0} |
| 126 | + }; |
| 127 | + |
| 128 | + // Execute Johnson's Algorithm |
| 129 | + JohnsonAlgorithm(graph); |
| 130 | + |
| 131 | + // ALGO INFO |
| 132 | + |
| 133 | + cout<<endl<<endl; |
| 134 | + cout<<"=================\n"; |
| 135 | + cout<<" ALGORITHM INFO \n"; |
| 136 | + cout<<"=================\n\n"; |
| 137 | + cout<<"Time COmplexity : O(V2log V + VE)\n"; |
| 138 | + cout<<"Space Complexity : O(V2)\n"; |
| 139 | + return 0; |
| 140 | +} |
0 commit comments