Skip to content

Commit 440292c

Browse files
committed
update readme
1 parent 17a2acd commit 440292c

File tree

1,420 files changed

+204
-1260918
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

1,420 files changed

+204
-1260918
lines changed

README.md

Lines changed: 203 additions & 52 deletions
Original file line numberDiff line numberDiff line change
@@ -1,103 +1,254 @@
1-
# AQUILIGN -- Mutilingual aligner and collator
1+
# 📐 AQUILIGN – Multilingual Aligner and Collator
22

33
[![codecov](https://codecov.io/github/ProMeText/Aquilign/graph/badge.svg?token=TY5HCBOOKL)](https://codecov.io/github/ProMeText/Aquilign)
4+
[![Last Commit](https://img.shields.io/github/last-commit/ProMeText/Aquilign)](https://github.com/ProMeText/Aquilign/commits/main)
5+
[![Repo Size](https://img.shields.io/github/repo-size/ProMeText/Aquilign)](https://github.com/ProMeText/Aquilign)
6+
[![Issues](https://img.shields.io/github/issues/ProMeText/Aquilign)](https://github.com/ProMeText/Aquilign/issues)
7+
[![Forks](https://img.shields.io/github/forks/ProMeText/Aquilign)](https://github.com/ProMeText/Aquilign/network/members)
8+
[![Stars](https://img.shields.io/github/stars/ProMeText/Aquilign)](https://github.com/ProMeText/Aquilign/stargazers)
49

10+
**AQUILIGN** is a multilingual alignment and collation engine designed for **historical and philological corpora**.
11+
It performs **clause-level alignment** of parallel texts using a combination of **regular-expression and BERT-based segmentation**, and supports multilingual workflows across medieval Romance, Latin, and Middle English texts.
512

6-
This repo contains a set of scripts to align (and soon collate) a multilingual medieval corpus. Its designers are Matthias Gille Levenson, Lucence Ing and Jean-Baptiste Camps.
13+
🧪 Developed by [Matthias Gille Levenson](https://github.com/matgille), [Lucence Ing](https://cv.hal.science/lucence-ing), and [Jean-Baptiste Camps](https://github.com/Jean-Baptiste-Camps).
14+
Originally presented at the *Computational Humanities Research Conference (CHR 2023)* — see [citation](#citation) for full reference.
715

8-
It is based on a fork of the automatic multilingual sentence aligner Bertalign.
916

10-
The scripts relies on a prior phase of text segmentation at syntagm level using regular expressions or bert-based segmentation to match grammatical syntagms and produce a more precise alignment.
17+
---
1118

12-
## Installation
19+
## 💡 Key Features
1320

14-
**Caveat**: the code is being tested on Python 3.9 and 3.10 due to some libraries limitations.
21+
- 🔀 **Multilingual clause-level alignment** using contextual embeddings
22+
- ✂️ **Trainable segmentation module** (BERT-based or regex-based)
23+
- 🧩 **Collation-ready architecture** (stemmatology support in development)
24+
- 📚 Optimized for **premodern and historical corpora**
1525

16-
`pip3 install -r requirements.txt`
26+
AQUILIGN builds on a fork of [Bertalign](https://github.com/roytseng-tw/bertalign), customized for historical languages and alignment evaluation.
1727

28+
---
1829

19-
## Training the segmenter
30+
## ⚙️ Installation
2031

21-
The segmenter we use is based on a Bert AutoModelForTokenClassification that is trainable.
32+
Supports **Python 3.9 or 3.10** only (due to dependency constraints).
2233

23-
Example of use:
34+
```bash
35+
git clone https://github.com/ProMeText/Aquilign.git
36+
cd Aquilign
37+
pip install -r requirements.txt
38+
```
39+
## 🧠 Training the Segmenter
40+
41+
The segmenter is based on a trainable `BertForTokenClassification` model from Hugging Face’s `transformers` library.
42+
43+
We fine-tune this model to detect custom sentence delimiters (`£`) in historical texts from the **[Multilingual Segmentation Dataset](https://github.com/carolisteia/multilingual-segmentation-dataset)**.
2444

25-
`python3 train_tokenizer.py -m google-bert/bert-base-multilingual-cased -t ../Multilingual_Aegidius/data/segmentation_data/split/multilingual/train.json -d ../Multilingual_Aegidius/data/segmentation_data/split/multilingual/dev.json -e ../Multilingual_Aegidius/data/segmentation_data/split/multilingual/test.json -ep 100 -b 128 --device cuda:0 -bf16 -n multilingual_model -s 2 -es 10`
45+
---
46+
47+
### 🔧 Example Command
48+
49+
```bash
50+
python3 train_tokenizer.py \
51+
-m google-bert/bert-base-multilingual-cased \
52+
-t multilingual-segmentation-dataset/data/Multilingual_Aegidius/segmented/split/multilingual/train.json \
53+
-d multilingual-segmentation-dataset/data/Multilingual_Aegidius/segmented/split/multilingual/dev.json \
54+
-e multilingual-segmentation-dataset/data/Multilingual_Aegidius/segmented/split/multilingual/test.json \
55+
-ep 100 \
56+
-b 128 \
57+
--device cuda:0 \
58+
-bf16 \
59+
-n multilingual_model \
60+
-s 2 \
61+
-es 10
62+
```
63+
This command fine-tunes the `bert-base-multilingual-cased` model with the following configuration:
2664

27-
For finetuning a multilingual model from the `bert-base-multilingual-cased` model, on 100 epochs, a batch size of 128,
28-
on the GPU, using bf16 mixed precision, saving the model every two epochs and with and early stopping value of 10.
65+
- **Epochs**: `100`
66+
- **Batch size**: `128`
67+
- **Device**: `cuda:0` (GPU)
68+
- **Precision**: `bf16` (bfloat16 mixed precision)
69+
- **Checkpointing**: Saves the model every 2 epochs
70+
- **Early stopping**: Stops after 10 epochs without improvement
2971

30-
The training data must follow the following structure and will be validated against a specific JSON schema.
72+
---
3173

32-
```JSON
33-
{"metadata":
34-
{
74+
### 🗂️ Input Format: JSON Schema
75+
76+
Training data must follow a structured JSON format, including both metadata and examples.
77+
78+
```json
79+
{
80+
"metadata": {
3581
"lang": ["la", "it", "es", "fr", "en", "ca", "pt"],
36-
"centuries": [13, 14, 15, 16], "delimiter": "£"
82+
"centuries": [13, 14, 15, 16],
83+
"delimiter": "£"
3784
},
38-
"examples":
39-
[
40-
{"example": "que mi padre me diese £por muger a un su fijo del Rey",
41-
"lang": "es"},
42-
{"example": "Per fé, disse Lion, £i v’andasse volentieri, £ma i vo veggio £qui",
43-
"lang": "it"}
44-
]
85+
"examples": [
86+
{
87+
"example": "que mi padre me diese £por muger a un su fijo del Rey",
88+
"lang": "es"
89+
},
90+
{
91+
"example": "Per fé, disse Lion, £i v’andasse volentieri, £ma i vo veggio £qui",
92+
"lang": "it"
93+
}
94+
]
4595
}
4696
```
47-
The metadata is used for describing the corpus and will be parsed in search for the delimiter. It is the only mandatory
48-
information.
97+
- The `metadata` block must include:
98+
99+
- `"lang"`: a list of ISO 639-1 codes representing the languages in the dataset
100+
- `"centuries"`: historical coverage of the examples (used for metadata and possible filtering)
101+
- `"delimiter"`: the segmentation marker token (default: `£`), predicted by the model
49102

50-
We recommend using the ISO codes for the target languages.
51-
The codes must match the language codes that are in the [`aquilign/preproc/delimiters.json`](aquilign/preproc/delimiters.json) file, used for the
52-
regexp tokenization that can be used as a baseline.
103+
- The `examples` block is an array of training samples, each containing:
53104

54-
## Use of the aligner
105+
- `"example"`: a string of text including segmentation markers
106+
- `"lang"`: the ISO code of the language the text belongs to
55107

56-
`python3 main.py -o lancelot -i data/extraitsLancelot/ii-48/ -mw data/extraitsLancelot/ii-48/fr/micha-ii-48.txt -d
57-
cuda:0 -t bert-based` to perform alignment with our bert-based segmenter, choosing Micha edition as base witness,
58-
on the GPU. The results will be saved in `result_dir/lancelot`
108+
---
59109

60-
`python3 main.py --help` to print help.
110+
📖 For more details, see the full documentation:
111+
➡️ [segmentation_model.md](https://github.com/carolisteia/multilingual-segmentation-dataset/blob/main/docs/segmentation_model.md)
61112

62-
Files must be sorted by language, using the ISO_639-1 language code as parent directory name (`es`, `fr`, `it`, `en`, etc).
63-
## Citation
64113

65-
Gille Levenson, M., Ing, L., & Camps, J.-B. (2024). Textual Transmission without Borders: Multiple Multilingual Alignment and Stemmatology of the ``Lancelot en prose’’ (Medieval French, Castilian, Italian). In W. Haverals, M. Koolen, & L. Thompson (Eds.), Proceedings of the Computational Humanities Research Conference 2024 (Vol. 3834, pp. 65–92). CEUR. https://ceur-ws.org/Vol-3834/#paper104
114+
## 🧮 Using the Aligner
66115

116+
To align a set of parallel texts using the BERT-based segmenter, run:
67117

118+
```bash
119+
python3 main.py \
120+
-o lancelot \
121+
-i data/extraitsLancelot/ii-48/ \
122+
-mw data/extraitsLancelot/ii-48/fr/micha-ii-48.txt \
123+
-d cuda:0 \
124+
-t bert-based
68125
```
126+
This will:
127+
128+
- ✅ Align the multilingual files found in `data/extraitsLancelot/ii-48/`
129+
- 📚 Use the **Micha edition** (French) as the **base witness**
130+
- ⚙️ Run on the **GPU** (`cuda:0`)
131+
- 💾 Save results to: `result_dir/lancelot/`
132+
133+
134+
> 📂 Files must be sorted by language, using the ISO 639-1 language code
135+
> as the **parent directory name** (`es/`, `fr/`, `it/`, `en/`, etc.).
136+
137+
To view all available options:
138+
139+
```bash
140+
python3 main.py --help
141+
```
142+
---
143+
## 📚 Citation
144+
145+
If you use this tool in your research, please cite:
146+
147+
Gille Levenson, M., Ing, L., & Camps, J.-B. (2024).
148+
**Textual Transmission without Borders: Multiple Multilingual Alignment and Stemmatology of the _Lancelot en prose_ (Medieval French, Castilian, Italian).**
149+
In W. Haverals, M. Koolen, & L. Thompson (Eds.), *Proceedings of the Computational Humanities Research Conference 2024* (Vol. 3834, pp. 65–92). CEUR.
150+
🔗 [https://ceur-ws.org/Vol-3834/#paper104](https://ceur-ws.org/Vol-3834/#paper104)
151+
152+
### 📄 BibTeX
153+
154+
```bibtex
69155
@inproceedings{gillelevenson_TextualTransmissionBorders_2024a,
70-
title = {Textual {{Transmission}} without {{Borders}}: {{Multiple Multilingual Alignment}} and {{Stemmatology}} of the ``{{Lancelot}} En Prose'' ({{Medieval French}}, {{Castilian}}, {{Italian}})},
71-
shorttitle = {Textual {{Transmission}} without {{Borders}}},
72-
booktitle = {Proceedings of the {{Computational Humanities}} {{Research Conference}} 2024},
156+
title = {Textual Transmission without Borders: Multiple Multilingual Alignment and Stemmatology of the ``Lancelot En Prose'' (Medieval French, Castilian, Italian)},
157+
shorttitle = {Textual Transmission without Borders},
158+
booktitle = {Proceedings of the Computational Humanities Research Conference 2024},
73159
author = {Gille Levenson, Matthias and Ing, Lucence and Camps, Jean-Baptiste},
74160
editor = {Haverals, Wouter and Koolen, Marijn and Thompson, Laure},
75161
date = {2024},
76-
series = {{{CEUR Workshop Proceedings}}},
162+
series = {CEUR Workshop Proceedings},
77163
volume = {3834},
78164
pages = {65--92},
79165
publisher = {CEUR},
80166
location = {Aarhus, Denmark},
81167
issn = {1613-0073},
82168
url = {https://ceur-ws.org/Vol-3834/#paper104},
83169
urldate = {2024-12-09},
84-
eventtitle = {Computational {{Humanities Research}} 2024},
85-
langid = {english},
86-
file = {/home/mgl/Bureau/Travail/Bibliotheque_zoteros/storage/CIH7IAHV/Levenson et al. - 2024 - Textual Transmission without Borders Multiple Multilingual Alignment and Stemmatology of the ``Lanc.pdf}
170+
eventtitle = {Computational Humanities Research 2024},
171+
langid = {english}
87172
}
88-
89173
```
90174

175+
## 🔗 Related Projects
176+
177+
**Aquilign** is part of a broader ecosystem of tools and corpora developed for the computational study of medieval multilingual textual traditions. The following repositories provide aligned datasets, segmentation resources, and use cases for the Aquilign pipeline:
178+
179+
- [Multilingual Segmentation Data](https://github.com/ProMeText/multilingual-segmentation-data)
180+
Sentence and clause-level segmentation datasets in seven medieval languages, used to train and evaluate the segmentation model integrated into Aquilign.
181+
182+
- [Parallelium – an aligned scriptures dataset](https://github.com/carolisteia/parallelium-scriptures-alignment-dataset)
183+
A multilingual dataset of aligned Biblical and Qur’anic texts (medieval and modern), used for benchmarking multilingual alignment in diverse historical settings.
184+
185+
- [Lancelot par maints langages](https://github.com/carolisteia/lancelot-par-maints-langages)
186+
A parallel corpus of *Lancelot en prose* in French, Castilian, and Italian. First testbed for Aquilign’s multilingual alignment and stemmatological comparison.
187+
188+
- [Multilingual Aegidius](https://github.com/ProMeText/Multilingual_Aegidius)
189+
A corpus of *De regimine principum* and its translations in Latin, Romance vernaculars, and Middle English. Built using the Aquilign segmentation and alignment workflow.
190+
191+
---
192+
193+
## 🚧 Project Status & Future Directions
194+
195+
**Aquilign** is under active development and currently supports:
196+
197+
- ✅ Sentence- and clause-level alignment across multiple languages
198+
- ✅ Integration with BERT-based and regex-based segmenters
199+
- ✅ Alignment evaluation and output export in tabular format
200+
- ✅ Compatibility with multilingual historical corpora (e.g. *Lancelot*, *De Regimine Principum*)
201+
202+
---
203+
204+
### 🔮 Planned Features
205+
206+
- 🧬 **Collation Module**:
207+
Automatic generation of collation tables across aligned witnesses for textual variant analysis
208+
209+
- 🏛️ **Stemmatic Analysis Integration**:
210+
Tools for stemmatological inference based on alignment structure and textual divergence
211+
212+
- 📊 **Interactive Visualization Tools**:
213+
Visualization of alignment, variant graphs, and stemma hypotheses
214+
215+
- 🌐 **Support for Additional Languages**:
216+
Extending tokenization and alignment capabilities to new premodern languages and scripts
217+
218+
---
219+
220+
If you're interested in contributing to any of these areas or proposing enhancements, see [Contact & Contributions](#-contact--contributions).
221+
222+
---
223+
224+
## 📫 Contact & Contributions
225+
226+
We welcome questions, feedback, and contributions to improve the Aquilign pipeline.
227+
228+
- 🛠️ Found a bug or have a feature request?
229+
➡️ [Open an issue](https://github.com/ProMeText/Aquilign/issues)
230+
231+
- 🔄 Want to contribute code or improvements?
232+
➡️ Fork the repo and submit a pull request
91233

92-
## Licence
234+
- 🎓 For academic collaboration or project inquiries:
235+
➡️ Reach out via [GitHub Discussions](https://github.com/ProMeText/Aquilign/discussions) or contact the authors directly
93236

94-
This fork is released under the [GNU General Public License v3.0](./LICENCE)
237+
---
238+
## 💰 Funding
95239

96-
## Funding
240+
This work benefited from national funding managed by the **Agence Nationale de la Recherche**
241+
under the *Investissements d'avenir* programme with the reference:
242+
**ANR-21-ESRE-0005 (Biblissima+)**
97243

98-
This work benefited́ from national funding managed by the Agence Nationale de la Recherche under the Investissements d'avenir programme with the reference ANR-21-ESRE-0005 (Biblissima+).
244+
> Ce travail a bénéficié d'une aide de l’État gérée par l’**Agence Nationale de la Recherche**
245+
> au titre du programme d’**Investissements d’avenir**, référence **ANR-21-ESRE-0005 (Biblissima+)**.
99246
100-
Ce travail a bénéficié́ d'une aide de l’État gérée par l'Agence Nationale de la Recherche au titre du programme d’Investissements d’avenir portant la référence ANR-21-ESRE-0005 (Biblissima+)
247+
<p align="center">
248+
<img src="https://github.com/user-attachments/assets/915c871f-fbaa-45ea-8334-2bf3dde8252d" alt="Biblissima+ Logo" width="600"/>
249+
</p>
101250

102-
![image](https://github.com/user-attachments/assets/915c871f-fbaa-45ea-8334-2bf3dde8252d)
251+
## ⚖️ License
103252

253+
This project is released under the **[GNU General Public License v3.0](./LICENCE)**.
254+
You are free to use, modify, and redistribute the code under the same license conditions.

data/Geste

Lines changed: 0 additions & 1 deletion
This file was deleted.

data/alignement/.~lock.exemples_parlants_ii-48.csv#

Lines changed: 0 additions & 1 deletion
This file was deleted.

data/alignement/.~lock.exemples_parlants_ii-61-1.csv#

Lines changed: 0 additions & 1 deletion
This file was deleted.

data/alignement/.~lock.exemples_parlants_ii-61-2.csv#

Lines changed: 0 additions & 1 deletion
This file was deleted.

data/alignement/.~lock.exemples_parlants_iv-75-1.csv#

Lines changed: 0 additions & 1 deletion
This file was deleted.
-22.1 KB
Binary file not shown.
-18.2 KB
Binary file not shown.
-19.7 KB
Binary file not shown.
-20.2 KB
Binary file not shown.

0 commit comments

Comments
 (0)