|
| 1 | +""" |
| 2 | +Contains functions for training and testing a PyTorch model. |
| 3 | +""" |
| 4 | +import torch |
| 5 | + |
| 6 | +from tqdm.auto import tqdm |
| 7 | +from typing import Dict, List, Tuple |
| 8 | + |
| 9 | +def train_step(model: torch.nn.Module, |
| 10 | + dataloader: torch.utils.data.DataLoader, |
| 11 | + loss_fn: torch.nn.Module, |
| 12 | + optimizer: torch.optim.Optimizer, |
| 13 | + device: torch.device) -> Tuple[float, float]: |
| 14 | + """Trains a PyTorch model for a single epoch. |
| 15 | +
|
| 16 | + Turns a target PyTorch model to training mode and then |
| 17 | + runs through all of the required training steps (forward |
| 18 | + pass, loss calculation, optimizer step). |
| 19 | +
|
| 20 | + Args: |
| 21 | + model: A PyTorch model to be trained. |
| 22 | + dataloader: A DataLoader instance for the model to be trained on. |
| 23 | + loss_fn: A PyTorch loss function to minimize. |
| 24 | + optimizer: A PyTorch optimizer to help minimize the loss function. |
| 25 | + device: A target device to compute on (e.g. "cuda" or "cpu"). |
| 26 | +
|
| 27 | + Returns: |
| 28 | + A tuple of training loss and training accuracy metrics. |
| 29 | + In the form (train_loss, train_accuracy). For example: |
| 30 | +
|
| 31 | + (0.1112, 0.8743) |
| 32 | + """ |
| 33 | + # Put model in train mode |
| 34 | + model.train() |
| 35 | + |
| 36 | + # Setup train loss and train accuracy values |
| 37 | + train_loss, train_acc = 0, 0 |
| 38 | + |
| 39 | + # Loop through data loader data batches |
| 40 | + for batch, (X, y) in enumerate(dataloader): |
| 41 | + # Send data to target device |
| 42 | + X, y = X.to(device), y.to(device) |
| 43 | + |
| 44 | + # 1. Forward pass |
| 45 | + y_pred = model(X) |
| 46 | + |
| 47 | + # 2. Calculate and accumulate loss |
| 48 | + loss = loss_fn(y_pred, y) |
| 49 | + train_loss += loss.item() |
| 50 | + |
| 51 | + # 3. Optimizer zero grad |
| 52 | + optimizer.zero_grad() |
| 53 | + |
| 54 | + # 4. Loss backward |
| 55 | + loss.backward() |
| 56 | + |
| 57 | + # 5. Optimizer step |
| 58 | + optimizer.step() |
| 59 | + |
| 60 | + # Calculate and accumulate accuracy metric across all batches |
| 61 | + y_pred_class = torch.argmax(torch.softmax(y_pred, dim=1), dim=1) |
| 62 | + train_acc += (y_pred_class == y).sum().item()/len(y_pred) |
| 63 | + |
| 64 | + # Adjust metrics to get average loss and accuracy per batch |
| 65 | + train_loss = train_loss / len(dataloader) |
| 66 | + train_acc = train_acc / len(dataloader) |
| 67 | + return train_loss, train_acc |
| 68 | + |
| 69 | +def test_step(model: torch.nn.Module, |
| 70 | + dataloader: torch.utils.data.DataLoader, |
| 71 | + loss_fn: torch.nn.Module, |
| 72 | + device: torch.device) -> Tuple[float, float]: |
| 73 | + """Tests a PyTorch model for a single epoch. |
| 74 | +
|
| 75 | + Turns a target PyTorch model to "eval" mode and then performs |
| 76 | + a forward pass on a testing dataset. |
| 77 | +
|
| 78 | + Args: |
| 79 | + model: A PyTorch model to be tested. |
| 80 | + dataloader: A DataLoader instance for the model to be tested on. |
| 81 | + loss_fn: A PyTorch loss function to calculate loss on the test data. |
| 82 | + device: A target device to compute on (e.g. "cuda" or "cpu"). |
| 83 | +
|
| 84 | + Returns: |
| 85 | + A tuple of testing loss and testing accuracy metrics. |
| 86 | + In the form (test_loss, test_accuracy). For example: |
| 87 | +
|
| 88 | + (0.0223, 0.8985) |
| 89 | + """ |
| 90 | + # Put model in eval mode |
| 91 | + model.eval() |
| 92 | + |
| 93 | + # Setup test loss and test accuracy values |
| 94 | + test_loss, test_acc = 0, 0 |
| 95 | + |
| 96 | + # Turn on inference context manager |
| 97 | + with torch.inference_mode(): |
| 98 | + # Loop through DataLoader batches |
| 99 | + for batch, (X, y) in enumerate(dataloader): |
| 100 | + # Send data to target device |
| 101 | + X, y = X.to(device), y.to(device) |
| 102 | + |
| 103 | + # 1. Forward pass |
| 104 | + test_pred_logits = model(X) |
| 105 | + |
| 106 | + # 2. Calculate and accumulate loss |
| 107 | + loss = loss_fn(test_pred_logits, y) |
| 108 | + test_loss += loss.item() |
| 109 | + |
| 110 | + # Calculate and accumulate accuracy |
| 111 | + test_pred_labels = test_pred_logits.argmax(dim=1) |
| 112 | + test_acc += ((test_pred_labels == y).sum().item()/len(test_pred_labels)) |
| 113 | + |
| 114 | + # Adjust metrics to get average loss and accuracy per batch |
| 115 | + test_loss = test_loss / len(dataloader) |
| 116 | + test_acc = test_acc / len(dataloader) |
| 117 | + return test_loss, test_acc |
| 118 | + |
| 119 | +def train(model: torch.nn.Module, |
| 120 | + train_dataloader: torch.utils.data.DataLoader, |
| 121 | + test_dataloader: torch.utils.data.DataLoader, |
| 122 | + optimizer: torch.optim.Optimizer, |
| 123 | + loss_fn: torch.nn.Module, |
| 124 | + epochs: int, |
| 125 | + device: torch.device) -> Dict[str, List]: |
| 126 | + """Trains and tests a PyTorch model. |
| 127 | +
|
| 128 | + Passes a target PyTorch models through train_step() and test_step() |
| 129 | + functions for a number of epochs, training and testing the model |
| 130 | + in the same epoch loop. |
| 131 | +
|
| 132 | + Calculates, prints and stores evaluation metrics throughout. |
| 133 | +
|
| 134 | + Args: |
| 135 | + model: A PyTorch model to be trained and tested. |
| 136 | + train_dataloader: A DataLoader instance for the model to be trained on. |
| 137 | + test_dataloader: A DataLoader instance for the model to be tested on. |
| 138 | + optimizer: A PyTorch optimizer to help minimize the loss function. |
| 139 | + loss_fn: A PyTorch loss function to calculate loss on both datasets. |
| 140 | + epochs: An integer indicating how many epochs to train for. |
| 141 | + device: A target device to compute on (e.g. "cuda" or "cpu"). |
| 142 | +
|
| 143 | + Returns: |
| 144 | + A dictionary of training and testing loss as well as training and |
| 145 | + testing accuracy metrics. Each metric has a value in a list for |
| 146 | + each epoch. |
| 147 | + In the form: {train_loss: [...], |
| 148 | + train_acc: [...], |
| 149 | + test_loss: [...], |
| 150 | + test_acc: [...]} |
| 151 | + For example if training for epochs=2: |
| 152 | + {train_loss: [2.0616, 1.0537], |
| 153 | + train_acc: [0.3945, 0.3945], |
| 154 | + test_loss: [1.2641, 1.5706], |
| 155 | + test_acc: [0.3400, 0.2973]} |
| 156 | + """ |
| 157 | + # Create empty results dictionary |
| 158 | + results = {"train_loss": [], |
| 159 | + "train_acc": [], |
| 160 | + "test_loss": [], |
| 161 | + "test_acc": [] |
| 162 | + } |
| 163 | + |
| 164 | + # Make sure model on target device |
| 165 | + model.to(device) |
| 166 | + |
| 167 | + # Loop through training and testing steps for a number of epochs |
| 168 | + for epoch in tqdm(range(epochs)): |
| 169 | + train_loss, train_acc = train_step(model=model, |
| 170 | + dataloader=train_dataloader, |
| 171 | + loss_fn=loss_fn, |
| 172 | + optimizer=optimizer, |
| 173 | + device=device) |
| 174 | + test_loss, test_acc = test_step(model=model, |
| 175 | + dataloader=test_dataloader, |
| 176 | + loss_fn=loss_fn, |
| 177 | + device=device) |
| 178 | + |
| 179 | + # Print out what's happening |
| 180 | + print( |
| 181 | + f"Epoch: {epoch+1} | " |
| 182 | + f"train_loss: {train_loss:.4f} | " |
| 183 | + f"train_acc: {train_acc:.4f} | " |
| 184 | + f"test_loss: {test_loss:.4f} | " |
| 185 | + f"test_acc: {test_acc:.4f}" |
| 186 | + ) |
| 187 | + |
| 188 | + # Update results dictionary |
| 189 | + results["train_loss"].append(train_loss) |
| 190 | + results["train_acc"].append(train_acc) |
| 191 | + results["test_loss"].append(test_loss) |
| 192 | + results["test_acc"].append(test_acc) |
| 193 | + |
| 194 | + # Return the filled results at the end of the epochs |
| 195 | + return results |
0 commit comments