|
1 |
| -from sklearn.decomposition import PCA, IncrementalPCA |
2 | 1 | from DimRed import *
|
3 |
| -if __name__ == "__main__": |
4 |
| - param_grids = [{"n_components": [1, 2, 3], |
5 |
| - "random_state": [1, 42, 69, 100]}, {"n_components": [1, 2, 3]}] |
| 2 | + |
| 3 | + |
| 4 | +def config(): |
| 5 | + param_grids = [{"n_components": [2], |
| 6 | + "random_state": [42]}, {"n_components": [2]}] |
6 | 7 | standard_pipeline = Pipeline([("StandardScalar", StandardScaler())])
|
7 | 8 | reduction_methods = [PCA, IncrementalPCA]
|
| 9 | + return param_grids, standard_pipeline, reduction_methods |
| 10 | + |
| 11 | + |
| 12 | +if __name__ == "__main__": |
| 13 | + X_train, X_test, y_train, y_test = load_dataset() |
| 14 | + param_grids, standard_pipeline, reduction_methods = config() |
8 | 15 | all_possible_variations = Variations(param_grids=param_grids,
|
9 |
| - reduction_methods=reduction_methods, standard_pipeline=standard_pipeline).produce_variations() |
10 |
| - print(all_possible_variations) |
| 16 | + reduction_methods=reduction_methods, standard_pipeline=standard_pipeline, analysis_instance=Analysis(X_train, y_train)).produce_variations() |
| 17 | + all_pipeline_performance, best_performances = Evaluation(_data={"X_train": X_train, "X_test": X_test, "y_train": y_train, |
| 18 | + "y_test": y_test}, all_possible_variations=all_possible_variations, labels=np.unique(y_train)).evaluate() |
| 19 | + pprint(best_performances) |
0 commit comments