Skip to content

Commit c4bff3c

Browse files
Update main.py
1 parent 7f4810e commit c4bff3c

File tree

1 file changed

+15
-6
lines changed

1 file changed

+15
-6
lines changed

main.py

Lines changed: 15 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -1,10 +1,19 @@
1-
from sklearn.decomposition import PCA, IncrementalPCA
21
from DimRed import *
3-
if __name__ == "__main__":
4-
param_grids = [{"n_components": [1, 2, 3],
5-
"random_state": [1, 42, 69, 100]}, {"n_components": [1, 2, 3]}]
2+
3+
4+
def config():
5+
param_grids = [{"n_components": [2],
6+
"random_state": [42]}, {"n_components": [2]}]
67
standard_pipeline = Pipeline([("StandardScalar", StandardScaler())])
78
reduction_methods = [PCA, IncrementalPCA]
9+
return param_grids, standard_pipeline, reduction_methods
10+
11+
12+
if __name__ == "__main__":
13+
X_train, X_test, y_train, y_test = load_dataset()
14+
param_grids, standard_pipeline, reduction_methods = config()
815
all_possible_variations = Variations(param_grids=param_grids,
9-
reduction_methods=reduction_methods, standard_pipeline=standard_pipeline).produce_variations()
10-
print(all_possible_variations)
16+
reduction_methods=reduction_methods, standard_pipeline=standard_pipeline, analysis_instance=Analysis(X_train, y_train)).produce_variations()
17+
all_pipeline_performance, best_performances = Evaluation(_data={"X_train": X_train, "X_test": X_test, "y_train": y_train,
18+
"y_test": y_test}, all_possible_variations=all_possible_variations, labels=np.unique(y_train)).evaluate()
19+
pprint(best_performances)

0 commit comments

Comments
 (0)