Skip to content

Commit 6b88a50

Browse files
Nic-Mamonai-bot
andauthored
2507 Add Horovod unit tests (#2519)
* [DLMED] add horovod tests Signed-off-by: Nic Ma <[email protected]> * [MONAI] python code formatting Signed-off-by: monai-bot <[email protected]> * [DLMED] skip min tests Signed-off-by: Nic Ma <[email protected]> * [DLMED] rename to skip auto CI Signed-off-by: Nic Ma <[email protected]> Co-authored-by: monai-bot <[email protected]>
1 parent 025dee7 commit 6b88a50

File tree

1 file changed

+57
-0
lines changed

1 file changed

+57
-0
lines changed
Lines changed: 57 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,57 @@
1+
# Copyright 2020 - 2021 MONAI Consortium
2+
# Licensed under the Apache License, Version 2.0 (the "License");
3+
# you may not use this file except in compliance with the License.
4+
# You may obtain a copy of the License at
5+
# http://www.apache.org/licenses/LICENSE-2.0
6+
# Unless required by applicable law or agreed to in writing, software
7+
# distributed under the License is distributed on an "AS IS" BASIS,
8+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
9+
# See the License for the specific language governing permissions and
10+
# limitations under the License.
11+
12+
import horovod.torch as hvd
13+
import torch
14+
15+
from monai.utils import evenly_divisible_all_gather
16+
17+
18+
class HvdEvenlyDivisibleAllGather:
19+
def test_data(self):
20+
# initialize Horovod
21+
hvd.init()
22+
if torch.cuda.is_available():
23+
torch.cuda.set_device(hvd.local_rank())
24+
self._run()
25+
26+
def _run(self):
27+
if hvd.rank() == 0:
28+
data1 = torch.tensor([[1, 2], [3, 4]])
29+
data2 = torch.tensor([[1.0, 2.0]])
30+
data3 = torch.tensor(7)
31+
32+
if hvd.rank() == 1:
33+
data1 = torch.tensor([[5, 6]])
34+
data2 = torch.tensor([[3.0, 4.0], [5.0, 6.0]])
35+
data3 = torch.tensor(8)
36+
37+
result1 = evenly_divisible_all_gather(data=data1, concat=True)
38+
torch.testing.assert_allclose(result1, torch.tensor([[1, 2], [3, 4], [5, 6]]))
39+
result2 = evenly_divisible_all_gather(data=data2, concat=False)
40+
for r, e in zip(result2, [torch.tensor([[1.0, 2.0]]), torch.tensor([[3.0, 4.0], [5.0, 6.0]])]):
41+
torch.testing.assert_allclose(r, e)
42+
result3 = evenly_divisible_all_gather(data=data3, concat=False)
43+
for r in result3:
44+
torch.testing.assert_allclose(r.ndimension(), 0)
45+
46+
47+
if __name__ == "__main__":
48+
"""
49+
1. Install Horovod:
50+
`HOROVOD_NCCL_INCLUDE=/usr/include HOROVOD_NCCL_LIB=/usr/lib/x86_64-linux-gnu HOROVOD_GPU_OPERATIONS=NCCL \
51+
HOROVOD_NCCL_LINK=SHARED pip install --no-cache-dir horovod`
52+
53+
2. Execute on 2 GPUs in a single machine:
54+
`horovodrun -np 2 python test_evenly_divisible_all_gather_hvd.py`
55+
56+
"""
57+
HvdEvenlyDivisibleAllGather().test_data()

0 commit comments

Comments
 (0)