@@ -89,15 +89,15 @@ class PersistentDataset(Dataset):
8989
9090 .. code-block:: python
9191
92- [ LoadNiftid (keys=['image', 'label']),
92+ [ LoadImaged (keys=['image', 'label']),
9393 Orientationd(keys=['image', 'label'], axcodes='RAS'),
9494 ScaleIntensityRanged(keys=['image'], a_min=-57, a_max=164, b_min=0.0, b_max=1.0, clip=True),
9595 RandCropByPosNegLabeld(keys=['image', 'label'], label_key='label', spatial_size=(96, 96, 96),
9696 pos=1, neg=1, num_samples=4, image_key='image', image_threshold=0),
9797 ToTensord(keys=['image', 'label'])]
9898
9999 Upon first use a filename based dataset will be processed by the transform for the
100- [LoadNiftid , Orientationd, ScaleIntensityRanged] and the resulting tensor written to
100+ [LoadImaged , Orientationd, ScaleIntensityRanged] and the resulting tensor written to
101101 the `cache_dir` before applying the remaining random dependant transforms
102102 [RandCropByPosNegLabeld, ToTensord] elements for use in the analysis.
103103
@@ -446,7 +446,7 @@ class CacheDataset(Dataset):
446446 For example, if the transform is a `Compose` of::
447447
448448 transforms = Compose([
449- LoadNiftid (),
449+ LoadImaged (),
450450 AddChanneld(),
451451 Spacingd(),
452452 Orientationd(),
@@ -457,7 +457,7 @@ class CacheDataset(Dataset):
457457
458458 when `transforms` is used in a multi-epoch training pipeline, before the first training epoch,
459459 this dataset will cache the results up to ``ScaleIntensityRanged``, as
460- all non-random transforms `LoadNiftid `, `AddChanneld`, `Spacingd`, `Orientationd`, `ScaleIntensityRanged`
460+ all non-random transforms `LoadImaged `, `AddChanneld`, `Spacingd`, `Orientationd`, `ScaleIntensityRanged`
461461 can be cached. During training, the dataset will load the cached results and run
462462 ``RandCropByPosNegLabeld`` and ``ToTensord``, as ``RandCropByPosNegLabeld`` is a randomized transform
463463 and the outcome not cached.
@@ -825,7 +825,7 @@ class ArrayDataset(Randomizable, _TorchDataset):
825825
826826 img_transform = Compose(
827827 [
828- LoadNifti (image_only=True),
828+ LoadImage (image_only=True),
829829 AddChannel(),
830830 RandAdjustContrast()
831831 ]
@@ -834,7 +834,7 @@ class ArrayDataset(Randomizable, _TorchDataset):
834834
835835 If training based on images and the metadata, the array transforms can not be composed
836836 because several transforms receives multiple parameters or return multiple values. Then Users need
837- to define their own callable method to parse metadata from `LoadNifti ` or set `affine` matrix
837+ to define their own callable method to parse metadata from `LoadImage ` or set `affine` matrix
838838 to `Spacing` transform::
839839
840840 class TestCompose(Compose):
@@ -845,7 +845,7 @@ def __call__(self, input_):
845845 return self.transforms[3](img), metadata
846846 img_transform = TestCompose(
847847 [
848- LoadNifti (image_only=False),
848+ LoadImage (image_only=False),
849849 AddChannel(),
850850 Spacing(pixdim=(1.5, 1.5, 3.0)),
851851 RandAdjustContrast()
0 commit comments