@@ -37,14 +37,12 @@ with [MONAI](https://github.com/Project-MONAI). Refer to full [MONAI Label docum
3737
3838## Sample Apps in MONAILabel
3939
40- ![ DEMO ] ( https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/sampleApps_index.jpeg )
40+ ![ image ] ( https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/sampleApps_index.jpeg )
4141
42- Demo on labeling tasks with visualization tools 3D Slicer, OHIF, and QuPath
42+ [ MONAI Label ] ( https://youtu.be/m2rYorVwXk4 ) | [ Demo Videos ] ( https://www.youtube.com/c/ProjectMONAI )
4343
44- [ MONAI Label] ( https://youtu.be/m2rYorVwXk4 ) | [ Demo] ( https://youtu.be/o8HipCgSZIw?t=1319 )
45-
46-
47- ![ DEMO] ( https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/demo.png )
44+ MONAI Label with visualization tools 3D Slicer, OHIF, DSA, QuPath, CVAT etc..
45+ ![ image] ( https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/demo.png )
4846<table >
4947<tr >
5048<td ><img src =" https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/ohif.png " alt =" drawing " width =" 150 " /></td >
@@ -58,6 +56,19 @@ Demo on labeling tasks with visualization tools 3D Slicer, OHIF, and QuPath
5856
5957> _ The codebase is currently under active development._
6058
59+ - Framework for developing and deploying MONAI Label Apps to train and infer AI models
60+ - Compositional & portable APIs for ease of integration in existing workflows
61+ - Customizable labeling app design for varying user expertise
62+ - Annotation support via [ 3DSlicer] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/slicer )
63+ & [ OHIF] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/ohif ) for radiology
64+ - Annotation support via [ QuPath] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/qupath )
65+ , [ Digital Slide Archive] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/dsa )
66+ & [ CVAT] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/cvat ) for
67+ pathology
68+ - Annotation support via [ CVAT] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/cvat ) for Endoscopy
69+ - PACS connectivity via [ DICOMWeb] ( https://www.dicomstandard.org/using/dicomweb )
70+ - Automated Active Learning workflow for endoscopy using [ CVAT] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/cvat )
71+
6172** Radiology App**
6273 This app has example models to do both interactive and automated segmentation over radiology (3D)
6374 images. Including auto segmentation with the latest deep learning models (e.g., UNet, UNETR) for multiple abdominal
@@ -73,28 +84,16 @@ Demo on labeling tasks with visualization tools 3D Slicer, OHIF, and QuPath
7384 anatomies. The specification for MONAILabel integration of the Bundle app links archived Model-Zoo for customized labeling
7485 (e.g., the third-party transformer model for labeling renal cortex, medulla, and pelvicalyceal system. Interactive tools such as DeepEdits).
7586
76- - Framework for developing and deploying MONAI Label Apps to train and infer AI models
77- - Compositional & portable APIs for ease of integration in existing workflows
78- - Customizable labeling app design for varying user expertise
79- - Annotation support via [ 3DSlicer] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/slicer )
80- & [ OHIF] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/ohif ) for radiology
81- - Annotation support via [ QuPath] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/qupath )
82- , [ Digital Slide Archive] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/dsa )
83- & [ CVAT] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/cvat ) for
84- pathology
85- - Annotation support via [ CVAT] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/cvat ) for Endoscopy
86- - PACS connectivity via [ DICOMWeb] ( https://www.dicomstandard.org/using/dicomweb )
87+ ** Endoscopy App**
88+ The Bundle app enables users to use interactive, automated segmentation and classification models over 2D images for endoscopy usecase.
89+ Combined with CVAT, it will demonstrate the fully automated Active Learning workflow to train + fine-tune a model.
8790
8891## Installation
8992
9093Start using MONAI Label with just three steps:
91-
92- ![ DEMO] ( https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/install_steps.jpeg )
93-
94-
94+ ![ image] ( https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/install_steps.jpeg )
9595
9696MONAI Label supports following OS with ** GPU/CUDA** enabled.
97-
9897- Ubuntu: Please see the [ installation guide] ( https://docs.monai.io/projects/label/en/latest/installation.html ) .
9998- [ Windows] ( https://docs.monai.io/projects/label/en/latest/installation.html#windows )
10099
@@ -116,6 +115,7 @@ git clone https://github.com/Project-MONAI/MONAILabel
116115pip install -r MONAILabel/requirements.txt
117116export PATH=$PATH :` pwd` /MONAILabel/monailabel/scripts
118117```
118+ If you are using DICOM-Web + OHIF then you have to build OHIF package separate. Please refer [ here] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/ohif#development-setup ) .
119119
120120#### [ Weekly Release] ( https://pypi.org/project/monailabel-weekly/ )
121121
@@ -174,7 +174,6 @@ algorithms, develpoment and integration.
174174MONAI Label is most currently tested and supported with stable release of 3D Slicer every version. Preview version of 3D Slicer is not fully tested and supported.
175175
176176To install stable released version of 3D Slicer, see [ 3D Slicer installation] ( https://download.slicer.org/ ) .
177-
178177Currently, Windows and Linux version are supported.
179178
180179### OHIF (Web-based)
@@ -183,19 +182,24 @@ The Open Health Imaging Foundation (OHIF) Viewer is an open source, web-based, m
183182It aims to provide a core framework for building complex imaging applications.
184183
185184At this point OHIF can be used to annotate the data in the DICOM server via the MONAI Label server.
186-
187185To use OHIF web-based application, refer to [ extensible web imaging platform] ( https://ohif.org/ )
188186
189187### QuPath
190188
191- Quantitative Pathology & Bioimage Analysis (QuPath)
192-
193- QuPath is an open, powerful, flexible, extensible software platform for bioimage analysis.
189+ Quantitative Pathology & Bioimage Analysis (QuPath) is an open, powerful, flexible, extensible software platform for bioimage analysis.
194190
195191To install stable released version of QuPath, see [ QuPath installation] ( https://qupath.github.io/ ) .
196-
197192Currently, Windows and Linux version are supported. Detailed documentation can be found [ QuPath Doc] ( https://qupath.readthedocs.io/en/stable/ ) .
198193
194+
195+ ### CVAT
196+
197+ CVAT is an interactive video and image annotation tool for computer vision.
198+
199+ To install stable released version of CVAT, see [ CVAT installation] ( https://github.com/opencv/cvat ) .
200+ Currently, Windows and Linux version are supported. Detailed documentation can be found [ CVAT Doc] ( https://opencv.github.io/cvat/docs/ ) .
201+
202+
199203## Plugins
200204
201205### [ 3D Slicer] ( https://download.slicer.org/ ) (radiology)
@@ -258,9 +262,14 @@ Install [CVAT](https://openvinotoolkit.github.io/cvat/docs/getting_started) and
258262enable [ Semi-Automatic and Automatic Annotation] ( https://openvinotoolkit.github.io/cvat/docs/administration/advanced/installation_automatic_annotation/ )
259263.
260264Refer [ CVAT Instructions] ( https://github.com/Project-MONAI/MONAILabel/tree/main/plugins/cvat ) for deploying available MONAILabel
261- pathology models into CVAT.
265+ pathology/endoscopy models into CVAT.
262266
263- ![ image] ( https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/cvat_detector.jpeg )
267+ <table >
268+ <tr >
269+ <td ><img src =" https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/cvat_detector.jpeg " width =" 300 " /></td >
270+ <td ><img src =" https://raw.githubusercontent.com/Project-MONAI/MONAILabel/main/docs/images/cvat_active_learning.jpeg " width =" 300 " /></td >
271+ </tr >
272+ </table >
264273
265274## Cite
266275
@@ -319,3 +328,5 @@ on [MONAI Label's GitHub Discussions tab](https://github.com/Project-MONAI/MONAI
319328- PyPI package: https://pypi.org/project/monailabel/
320329- Weekly previews: https://pypi.org/project/monailabel-weekly/
321330- Docker Hub: https://hub.docker.com/r/projectmonai/monailabel
331+ - Client API: https://www.youtube.com/watch?v=mPMYJyzSmyo
332+ - Demo Videos: https://www.youtube.com/c/ProjectMONAI
0 commit comments