Skip to content

Commit 6ab871c

Browse files
Merge pull request #34 from ProjectZeroDays/implement-advanced-code-logic
Implement advanced code logic for future implementations
2 parents e9e83c7 + b0a71b4 commit 6ab871c

File tree

6 files changed

+141
-8
lines changed

6 files changed

+141
-8
lines changed

src/advanced_malware_analysis.py

Lines changed: 43 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -138,3 +138,46 @@ def ai_driven_automated_testing(self, exploit_paths):
138138
for exploit_path in exploit_paths:
139139
self.test_exploits_in_sandbox(exploit_path)
140140
return self.analysis_results
141+
142+
def detect_vm_environment(self):
143+
logging.info("Detecting VM environment")
144+
vm_indicators = [
145+
self.check_vm_processes(),
146+
self.check_vm_files(),
147+
self.check_vm_registry_keys()
148+
]
149+
return any(vm_indicators)
150+
151+
def check_vm_processes(self):
152+
# Implement logic to check for VM-related processes
153+
return False
154+
155+
def check_vm_files(self):
156+
# Implement logic to check for VM-related files
157+
return False
158+
159+
def check_vm_registry_keys(self):
160+
# Implement logic to check for VM-related registry keys
161+
return False
162+
163+
def test_detection_techniques(self, malware_path):
164+
logging.info(f"Testing detection techniques on: {malware_path}")
165+
sandbox_detected = self.detect_sandbox_environment()
166+
vm_detected = self.detect_vm_environment()
167+
detection_results = {
168+
"sandbox_detected": sandbox_detected,
169+
"vm_detected": vm_detected
170+
}
171+
return detection_results
172+
173+
def fine_tune_detection_methods(self, malware_path):
174+
logging.info(f"Fine-tuning detection methods for: {malware_path}")
175+
detection_results = self.test_detection_techniques(malware_path)
176+
# Implement logic to fine-tune detection methods based on results
177+
return detection_results
178+
179+
def integrate_detection_techniques(self, malware_path):
180+
logging.info(f"Integrating detection techniques for: {malware_path}")
181+
detection_results = self.fine_tune_detection_methods(malware_path)
182+
self.analysis_results.update(detection_results)
183+
return self.analysis_results

src/ai_model.py

Lines changed: 20 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -177,6 +177,26 @@ def optimize_exploitation_techniques(self, objective_function, bounds, n_iterati
177177
self.logger.info(f"Optimization completed. Result: {result}")
178178
return result
179179

180+
def train_model(self, training_data, epochs=10):
181+
self.logger.info("Training AI model with relevant datasets...")
182+
self.model.fit(training_data, epochs=epochs)
183+
self.logger.info("Model training completed.")
184+
185+
def evaluate_exploits(self, exploits):
186+
self.logger.info("Evaluating the effectiveness of generated exploits...")
187+
effectiveness_scores = []
188+
for exploit in exploits:
189+
# Implement logic to evaluate the effectiveness of each exploit
190+
effectiveness_score = random.uniform(0, 1) # Placeholder for evaluation logic
191+
effectiveness_scores.append(effectiveness_score)
192+
self.logger.info(f"Effectiveness scores: {effectiveness_scores}")
193+
return effectiveness_scores
194+
195+
def integrate_exploit_generation(self, exploits):
196+
self.logger.info("Integrating the improved exploit generation process into the existing system...")
197+
# Implement logic to integrate the improved exploit generation process
198+
self.logger.info("Exploit generation process integrated successfully.")
199+
180200
if __name__ == "__main__":
181201
model_path = "path/to/pretrained/model.h5"
182202
ai_model = AIDeploymentModel(model_path)

src/exploit_payloads.py

Lines changed: 21 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -86,3 +86,24 @@ def implement_anti_debugging(self, payload):
8686
def optimize_exploitation_techniques(self, objective_function, bounds, n_iterations=100):
8787
result = minimize(objective_function, bounds, method='L-BFGS-B', options={'maxiter': n_iterations})
8888
return result
89+
90+
def test_optimized_payloads(self, payloads, target):
91+
success_rates = []
92+
for payload in payloads:
93+
success_rate = self.evaluate_payload_success(payload, target)
94+
success_rates.append(success_rate)
95+
return success_rates
96+
97+
def evaluate_payload_success(self, payload, target):
98+
# Implement logic to evaluate the success rate of the payload
99+
success_rate = random.uniform(0, 1) # Placeholder for evaluation logic
100+
return success_rate
101+
102+
def fine_tune_optimization(self, objective_function, bounds, n_iterations=100):
103+
result = self.optimize_exploitation_techniques(objective_function, bounds, n_iterations)
104+
return result
105+
106+
def integrate_optimized_techniques(self, optimized_payloads):
107+
# Implement logic to integrate the optimized exploitation techniques into the existing system
108+
integrated_payloads = [self.add_evasion_techniques(payload) for payload in optimized_payloads]
109+
return integrated_payloads

src/session_management.py

Lines changed: 23 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -73,6 +73,26 @@ def escalate_privileges(self, user_id):
7373
logging.info(f"Escalating privileges for user {user_id}")
7474
# Implement privilege escalation logic here
7575

76+
def post_exploitation(self, user_id):
77+
logging.info(f"Performing post-exploitation tasks for user {user_id}")
78+
self.establish_persistence(user_id)
79+
self.escalate_privileges(user_id)
80+
# Add more post-exploitation tasks as needed
81+
82+
def test_post_exploitation(self, user_id):
83+
logging.info(f"Testing post-exploitation tasks for user {user_id}")
84+
self.post_exploitation(user_id)
85+
# Add logic to evaluate the effectiveness of post-exploitation tasks
86+
87+
def fine_tune_post_exploitation(self, user_id):
88+
logging.info(f"Fine-tuning post-exploitation tasks for user {user_id}")
89+
# Add logic to fine-tune post-exploitation methods as necessary
90+
91+
def integrate_post_exploitation(self, user_id):
92+
logging.info(f"Integrating post-exploitation capabilities for user {user_id}")
93+
self.post_exploitation(user_id)
94+
# Add logic to integrate post-exploitation capabilities into the existing system
95+
7696
if __name__ == "__main__":
7797
session_manager = SessionManager()
7898
session_manager.run()
@@ -82,5 +102,8 @@ def escalate_privileges(self, user_id):
82102
session_manager.start_session('user2')
83103
time.sleep(310)
84104
session_manager.end_session('user1')
105+
session_manager.test_post_exploitation('user2')
106+
session_manager.fine_tune_post_exploitation('user2')
107+
session_manager.integrate_post_exploitation('user2')
85108

86109
# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.

src/vulnerability_scanner.py

Lines changed: 15 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -1,15 +1,19 @@
11
import logging
22
import networkx as nx
3-
from sklearn.ensemble import RandomForestClassifier
3+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier, VotingClassifier
44
from sklearn.model_selection import train_test_split
55
from sklearn.metrics import accuracy_score
6+
from sklearn.preprocessing import StandardScaler
67

78
class VulnerabilityScanner:
89
def __init__(self):
910
self.scan_results = []
10-
self.model = RandomForestClassifier(n_estimators=100)
11+
self.rf_model = RandomForestClassifier(n_estimators=100)
12+
self.gb_model = GradientBoostingClassifier(n_estimators=100)
13+
self.ensemble_model = VotingClassifier(estimators=[('rf', self.rf_model), ('gb', self.gb_model)], voting='soft')
1114
self.data = None
1215
self.labels = None
16+
self.scaler = StandardScaler()
1317

1418
def scan(self, target):
1519
logging.info(f"Scanning target: {target}")
@@ -88,24 +92,28 @@ def ensure_compatibility(self, existing_data, new_component_data):
8892
}
8993
return compatible_data
9094

95+
def preprocess_data(self, data):
96+
return self.scaler.fit_transform(data)
97+
9198
def load_data(self, data, labels):
92-
self.data = data
99+
self.data = self.preprocess_data(data)
93100
self.labels = labels
94101

95102
def train_model(self):
96103
if self.data is None or self.labels is None:
97104
raise ValueError("Data and labels must be loaded before training the model.")
98105

99106
X_train, X_test, y_train, y_test = train_test_split(self.data, self.labels, test_size=0.2, random_state=42)
100-
self.model.fit(X_train, y_train)
101-
predictions = self.model.predict(X_test)
107+
self.ensemble_model.fit(X_train, y_train)
108+
predictions = self.ensemble_model.predict(X_test)
102109
accuracy = accuracy_score(y_test, predictions)
103110
return accuracy
104111

105112
def predict(self, new_data):
106-
if self.model is None:
113+
if self.ensemble_model is None:
107114
raise ValueError("Model must be trained before making predictions.")
108115

109-
return self.model.predict(new_data)
116+
preprocessed_data = self.preprocess_data(new_data)
117+
return self.ensemble_model.predict(preprocessed_data)
110118

111119
# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.

src/zero_day_exploits.py

Lines changed: 19 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,5 +1,6 @@
11
import logging
22
import random
3+
import string
34

45
class ZeroDayExploits:
56
def __init__(self):
@@ -62,4 +63,21 @@ def implement_anti_debugging(self, exploit_code):
6263
anti_debugging_code = f"{exploit_code} with anti-debugging techniques"
6364
return anti_debugging_code
6465

65-
# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.
66+
def test_evasion_techniques(self, exploit_code):
67+
logging.info("Testing evasion techniques")
68+
# Placeholder for testing evasion techniques
69+
effectiveness = random.uniform(0, 1) # Simulate effectiveness score
70+
return effectiveness
71+
72+
def fine_tune_evasion_methods(self, exploit_code):
73+
logging.info("Fine-tuning evasion methods")
74+
# Placeholder for fine-tuning evasion methods
75+
fine_tuned_code = f"{exploit_code} with fine-tuned evasion methods"
76+
return fine_tuned_code
77+
78+
def integrate_evasion_techniques(self, exploit_code):
79+
logging.info("Integrating evasion techniques into the existing system")
80+
integrated_code = self.add_evasion_techniques(exploit_code)
81+
integrated_code = self.implement_code_obfuscation(integrated_code)
82+
integrated_code = self.implement_anti_debugging(integrated_code)
83+
return integrated_code

0 commit comments

Comments
 (0)