Skip to content

Commit e8e9ce1

Browse files
Merge pull request #32 from ProjectZeroDays/add-future-implementations-plan
Add future implementations plan and enhance modules
2 parents 783cd26 + 8e5beca commit e8e9ce1

11 files changed

+321
-22
lines changed

README.md

Lines changed: 3 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@
88
### 2. [Android Zero-Click Exploit](#android-exploit)
99
#### * 2.1. [Exploit Title: Android System Server RCE (CVE-2024-0002)](#android-title)
1010
#### * 2.2. [Deployment and Execution](#android-deployment)
11-
#### * 2.3. [Why it Works](#android-reason)
11+
#### * 2.3. [Why it Works](#android-reason)
1212
#### * 2.4. [Custom Zero-Click Exploit: Android Package Manager Service (PackageManagerService)](#android-custom)
1313
### 3. [iOS Zero-Click Exploit](#ios-exploit)
1414
#### * 3.1. [Exploit Title: Kernel Memory Disclosure Vulnerability (CVE-2024-0001)](#ios-title)
@@ -1252,6 +1252,8 @@ To implement secure communication protocols, follow these steps:
12521252

12531253
**Future Implementations**
12541254

1255+
For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.
1256+
12551257
* Implement a real-time threat intelligence module to provide up-to-date information on emerging threats and vulnerabilities.
12561258
* Develop a machine learning-based anomaly detection system to identify unusual patterns in network traffic and system behavior.
12571259
* Integrate a blockchain-based logging system to ensure the integrity and immutability of logs.

future_implementations_plan.md

Lines changed: 169 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,169 @@
1+
# Future Implementations Plan
2+
3+
## Enhancing Vulnerability Detection Accuracy
4+
5+
### Priority
6+
High
7+
8+
### Resources Needed
9+
Data scientists, machine learning engineers, and access to vulnerability datasets
10+
11+
### Success Measurement
12+
Improved accuracy metrics in `src/vulnerability_scanner.py`
13+
14+
### Potential Risks and Challenges
15+
Ensuring the quality and diversity of training data, computational resource requirements
16+
17+
### Detailed Steps
18+
1. Collect and preprocess vulnerability datasets.
19+
2. Implement ensemble learning or graph-based methods in `src/vulnerability_scanner.py`.
20+
3. Train the model using the collected datasets.
21+
4. Evaluate the model's performance and fine-tune as necessary.
22+
5. Integrate the improved model into the existing system.
23+
24+
## Developing More Sophisticated Exploit Generation
25+
26+
### Priority
27+
High
28+
29+
### Resources Needed
30+
AI researchers, reinforcement learning experts, and access to advanced AI models
31+
32+
### Success Measurement
33+
Increased effectiveness of exploits generated by `src/ai_model.py`
34+
35+
### Potential Risks and Challenges
36+
Complexity of implementing advanced AI techniques, ensuring the safety and ethical use of generated exploits
37+
38+
### Detailed Steps
39+
1. Research and select appropriate AI-powered methods (e.g., reinforcement learning, generative models).
40+
2. Implement the selected methods in `src/ai_model.py`.
41+
3. Train the AI model using relevant datasets.
42+
4. Evaluate the effectiveness of the generated exploits.
43+
5. Integrate the improved exploit generation process into the existing system.
44+
45+
## Optimizing Exploitation Techniques
46+
47+
### Priority
48+
Medium
49+
50+
### Resources Needed
51+
Optimization experts, access to optimization algorithms, and computational resources
52+
53+
### Success Measurement
54+
Improved success rate of exploitation in `src/exploit_payloads.py`
55+
56+
### Potential Risks and Challenges
57+
Balancing optimization with evasion techniques, computational resource requirements
58+
59+
### Detailed Steps
60+
1. Research and select appropriate optimization techniques (e.g., Bayesian optimization, evolutionary algorithms).
61+
2. Implement the selected techniques in `src/exploit_payloads.py`.
62+
3. Test the optimized payloads and evaluate their success rate.
63+
4. Fine-tune the optimization process as necessary.
64+
5. Integrate the optimized exploitation techniques into the existing system.
65+
66+
## Incorporating Evasion Techniques
67+
68+
### Priority
69+
Medium
70+
71+
### Resources Needed
72+
Security researchers, access to evasion technique libraries, and testing environments
73+
74+
### Success Measurement
75+
Increased stealthiness of exploits in `src/zero_day_exploits.py`
76+
77+
### Potential Risks and Challenges
78+
Ensuring compatibility with existing exploits, avoiding detection by advanced security systems
79+
80+
### Detailed Steps
81+
1. Research and select appropriate evasion techniques (e.g., code obfuscation, anti-debugging).
82+
2. Implement the selected techniques in `src/zero_day_exploits.py`.
83+
3. Test the evasion techniques and evaluate their effectiveness.
84+
4. Fine-tune the evasion methods as necessary.
85+
5. Integrate the evasion techniques into the existing system.
86+
87+
## Improving Post-Exploitation Capabilities
88+
89+
### Priority
90+
Medium
91+
92+
### Resources Needed
93+
Security researchers, access to post-exploitation tools, and testing environments
94+
95+
### Success Measurement
96+
Enhanced post-exploitation features in `src/session_management.py`
97+
98+
### Potential Risks and Challenges
99+
Ensuring the reliability and stability of post-exploitation features, avoiding detection by security systems
100+
101+
### Detailed Steps
102+
1. Research and select appropriate post-exploitation features (e.g., establishing persistence, escalating privileges).
103+
2. Implement the selected features in `src/session_management.py`.
104+
3. Test the post-exploitation features and evaluate their effectiveness.
105+
4. Fine-tune the post-exploitation methods as necessary.
106+
5. Integrate the post-exploitation capabilities into the existing system.
107+
108+
## Adding Advanced Sandbox and VM Detection and Escape Techniques
109+
110+
### Priority
111+
Medium
112+
113+
### Resources Needed
114+
Security researchers, access to sandbox and VM detection libraries, and testing environments
115+
116+
### Success Measurement
117+
Increased effectiveness of sandbox and VM detection and escape techniques
118+
119+
### Potential Risks and Challenges
120+
Ensuring compatibility with existing exploits, avoiding detection by advanced security systems
121+
122+
### Detailed Steps
123+
1. Research and select appropriate sandbox and VM detection and escape techniques.
124+
2. Implement the selected techniques in `src/advanced_malware_analysis.py`.
125+
3. Test the detection and escape techniques and evaluate their effectiveness.
126+
4. Fine-tune the techniques as necessary.
127+
5. Integrate the sandbox and VM detection and escape techniques into the existing system.
128+
129+
## Adding a Sandbox Module for Testing Exploits
130+
131+
### Priority
132+
Medium
133+
134+
### Resources Needed
135+
Security researchers, access to sandbox environments, and testing tools
136+
137+
### Success Measurement
138+
Improved accuracy and reliability of exploit testing
139+
140+
### Potential Risks and Challenges
141+
Ensuring the safety and security of the sandbox environment, avoiding detection by advanced security systems
142+
143+
### Detailed Steps
144+
1. Research and select appropriate sandbox environments and testing tools.
145+
2. Develop a sandbox module for manual and AI-driven automated testing in `src/advanced_malware_analysis.py`.
146+
3. Test the sandbox module and evaluate its accuracy and reliability.
147+
4. Fine-tune the sandbox module as necessary.
148+
5. Integrate the sandbox module into the existing system.
149+
150+
## Updating the README.md to Reflect All Updates and Changes
151+
152+
### Priority
153+
Low
154+
155+
### Resources Needed
156+
Technical writers, access to project documentation, and collaboration with developers
157+
158+
### Success Measurement
159+
Updated and accurate `README.md`
160+
161+
### Potential Risks and Challenges
162+
Ensuring the accuracy and completeness of the documentation, keeping the documentation up-to-date with ongoing changes
163+
164+
### Detailed Steps
165+
1. Review the current `README.md` and identify sections that need updates.
166+
2. Collaborate with developers to gather information on recent updates and changes.
167+
3. Update the `README.md` to reflect the new features and improvements.
168+
4. Ensure the documentation is accurate and complete.
169+
5. Regularly review and update the `README.md` as needed.

src/advanced_malware_analysis.py

Lines changed: 43 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -95,3 +95,46 @@ def ensure_compatibility(self, existing_data, new_component_data):
9595
"new_component_reverse_engineering_data": new_component_data.get("reverse_engineering_data", {})
9696
}
9797
return compatible_data
98+
99+
def detect_sandbox_environment(self):
100+
logging.info("Detecting sandbox environment")
101+
sandbox_indicators = [
102+
self.check_processes(),
103+
self.check_files(),
104+
self.check_registry_keys()
105+
]
106+
return any(sandbox_indicators)
107+
108+
def check_processes(self):
109+
# Implement logic to check for sandbox-related processes
110+
return False
111+
112+
def check_files(self):
113+
# Implement logic to check for sandbox-related files
114+
return False
115+
116+
def check_registry_keys(self):
117+
# Implement logic to check for sandbox-related registry keys
118+
return False
119+
120+
def escape_sandbox(self):
121+
logging.info("Attempting to escape sandbox environment")
122+
if self.detect_sandbox_environment():
123+
self.perform_sandbox_escape()
124+
125+
def perform_sandbox_escape(self):
126+
# Implement logic to escape sandbox environment
127+
pass
128+
129+
def test_exploits_in_sandbox(self, exploit_path):
130+
logging.info(f"Testing exploit in sandbox: {exploit_path}")
131+
self.run_sandbox(exploit_path)
132+
self.extract_behavioral_data(exploit_path)
133+
self.perform_reverse_engineering(exploit_path)
134+
return self.analysis_results
135+
136+
def ai_driven_automated_testing(self, exploit_paths):
137+
logging.info("Starting AI-driven automated testing of exploits")
138+
for exploit_path in exploit_paths:
139+
self.test_exploits_in_sandbox(exploit_path)
140+
return self.analysis_results

src/ai_model.py

Lines changed: 19 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -158,6 +158,25 @@ def bayesian_optimization_exploitation(self, objective_function, bounds, n_itera
158158
self.logger.info(f"Bayesian optimization completed. Result: {result}")
159159
return result
160160

161+
def generate_exploits_with_reinforcement_learning(self, environment, policy, episodes=1000):
162+
self.logger.info("Starting reinforcement learning for exploit generation...")
163+
for episode in range(episodes):
164+
state = environment.reset()
165+
done = False
166+
while not done:
167+
action = policy(state)
168+
next_state, reward, done, _ = environment.step(action)
169+
policy.update(state, action, reward, next_state)
170+
state = next_state
171+
self.logger.info("Reinforcement learning for exploit generation completed.")
172+
return policy
173+
174+
def optimize_exploitation_techniques(self, objective_function, bounds, n_iterations=100):
175+
self.logger.info("Starting optimization of exploitation techniques...")
176+
result = minimize(objective_function, bounds, method='L-BFGS-B', options={'maxiter': n_iterations})
177+
self.logger.info(f"Optimization completed. Result: {result}")
178+
return result
179+
161180
if __name__ == "__main__":
162181
model_path = "path/to/pretrained/model.h5"
163182
ai_model = AIDeploymentModel(model_path)

src/exploit_payloads.py

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,7 @@
11
from cryptography.fernet import Fernet
22
import random
33
import string
4+
from scipy.optimize import minimize
45

56
class ExploitPayloads:
67
def __init__(self):
@@ -81,3 +82,7 @@ def implement_anti_debugging(self, payload):
8182
# Implement anti-debugging methods
8283
anti_debugging_payload = f"{payload} with anti-debugging methods"
8384
return anti_debugging_payload
85+
86+
def optimize_exploitation_techniques(self, objective_function, bounds, n_iterations=100):
87+
result = minimize(objective_function, bounds, method='L-BFGS-B', options={'maxiter': n_iterations})
88+
return result

src/real_time_monitoring.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -88,3 +88,5 @@ def ensure_compatibility(self, existing_data, new_component_data):
8888
"new_component_data": new_component_data
8989
}
9090
return compatible_data
91+
92+
# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.

src/real_time_threat_intelligence.py

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -70,3 +70,5 @@ def ensure_compatibility(self, existing_data, new_component_data):
7070
"new_component_data": new_component_data
7171
}
7272
return compatible_data
73+
74+
# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.

src/self_healing_ai_manager.py

Lines changed: 23 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -1,21 +1,23 @@
1-
import logging
2-
from typing import Dict, Any
3-
4-
class SelfHealingAIManager:
5-
def __init__(self, logger: logging.Logger):
6-
self.logger = logger
7-
8-
def ai_feedback_loop(self, data: Dict[str, Any]):
9-
self.logger.info(f"AI feedback loop triggered with data: {data}")
10-
# Placeholder for AI feedback loop logic
11-
self.logger.info("AI feedback loop completed.")
12-
13-
def github_integration(self, data: Dict[str, Any]):
14-
self.logger.info(f"GitHub integration triggered with data: {data}")
15-
# Placeholder for GitHub integration logic
16-
self.logger.info("GitHub integration completed.")
17-
18-
def huggingface_integration(self, data: Dict[str, Any]):
19-
self.logger.info(f"Hugging Face integration triggered with data: {data}")
20-
# Placeholder for Hugging Face integration logic
21-
self.logger.info("Hugging Face integration completed.")
1+
import logging
2+
from typing import Dict, Any
3+
4+
class SelfHealingAIManager:
5+
def __init__(self, logger: logging.Logger):
6+
self.logger = logger
7+
8+
def ai_feedback_loop(self, data: Dict[str, Any]):
9+
self.logger.info(f"AI feedback loop triggered with data: {data}")
10+
# Placeholder for AI feedback loop logic
11+
self.logger.info("AI feedback loop completed.")
12+
13+
def github_integration(self, data: Dict[str, Any]):
14+
self.logger.info(f"GitHub integration triggered with data: {data}")
15+
# Placeholder for GitHub integration logic
16+
self.logger.info("GitHub integration completed.")
17+
18+
def huggingface_integration(self, data: Dict[str, Any]):
19+
self.logger.info(f"Hugging Face integration triggered with data: {data}")
20+
# Placeholder for Hugging Face integration logic
21+
self.logger.info("Hugging Face integration completed.")
22+
23+
# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.

src/session_management.py

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -65,6 +65,14 @@ def implement_session_timeout(self):
6565
logging.info(f"Session for user {user_id} has timed out.")
6666
time.sleep(60)
6767

68+
def establish_persistence(self, user_id):
69+
logging.info(f"Establishing persistence for user {user_id}")
70+
# Implement persistence logic here
71+
72+
def escalate_privileges(self, user_id):
73+
logging.info(f"Escalating privileges for user {user_id}")
74+
# Implement privilege escalation logic here
75+
6876
if __name__ == "__main__":
6977
session_manager = SessionManager()
7078
session_manager.run()
@@ -74,3 +82,5 @@ def implement_session_timeout(self):
7482
session_manager.start_session('user2')
7583
time.sleep(310)
7684
session_manager.end_session('user1')
85+
86+
# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.

src/vulnerability_scanner.py

Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1,9 +1,15 @@
11
import logging
22
import networkx as nx
3+
from sklearn.ensemble import RandomForestClassifier
4+
from sklearn.model_selection import train_test_split
5+
from sklearn.metrics import accuracy_score
36

47
class VulnerabilityScanner:
58
def __init__(self):
69
self.scan_results = []
10+
self.model = RandomForestClassifier(n_estimators=100)
11+
self.data = None
12+
self.labels = None
713

814
def scan(self, target):
915
logging.info(f"Scanning target: {target}")
@@ -81,3 +87,25 @@ def ensure_compatibility(self, existing_data, new_component_data):
8187
"new_component_vulnerabilities": new_component_data.get("vulnerabilities", {})
8288
}
8389
return compatible_data
90+
91+
def load_data(self, data, labels):
92+
self.data = data
93+
self.labels = labels
94+
95+
def train_model(self):
96+
if self.data is None or self.labels is None:
97+
raise ValueError("Data and labels must be loaded before training the model.")
98+
99+
X_train, X_test, y_train, y_test = train_test_split(self.data, self.labels, test_size=0.2, random_state=42)
100+
self.model.fit(X_train, y_train)
101+
predictions = self.model.predict(X_test)
102+
accuracy = accuracy_score(y_test, predictions)
103+
return accuracy
104+
105+
def predict(self, new_data):
106+
if self.model is None:
107+
raise ValueError("Model must be trained before making predictions.")
108+
109+
return self.model.predict(new_data)
110+
111+
# For detailed plans on future implementations, please refer to the `future_implementations_plan.md` file.

0 commit comments

Comments
 (0)