|
83 | 83 | A = np.zeros((nx, ny)) |
84 | 84 | A[nx // 2, ny // 2] = 1.0 |
85 | 85 |
|
86 | | -D1op = pylops.FirstDerivative(nx * ny, dims=(nx, ny), dir=0, dtype="float64") |
| 86 | +D1op = pylops.FirstDerivative((nx, ny), dir=0, dtype="float64") |
87 | 87 | B = np.reshape(D1op * A.ravel(), (nx, ny)) |
88 | 88 |
|
89 | 89 | fig, axs = plt.subplots(1, 2, figsize=(10, 3)) |
|
106 | 106 | A = np.zeros((nx, ny)) |
107 | 107 | A[nx // 2, ny // 2] = 1.0 |
108 | 108 |
|
109 | | -D2op = pylops.SecondDerivative(nx * ny, dims=(nx, ny), dir=0, dtype="float64") |
| 109 | +D2op = pylops.SecondDerivative((nx, ny), dir=0, dtype="float64") |
110 | 110 | B = np.reshape(D2op * A.ravel(), (nx, ny)) |
111 | 111 |
|
112 | 112 | fig, axs = plt.subplots(1, 2, figsize=(10, 3)) |
|
127 | 127 | ############################################################################### |
128 | 128 | # We can also apply the second derivative to the second direction of |
129 | 129 | # our data (``dir=1``) |
130 | | -D2op = pylops.SecondDerivative(nx * ny, dims=(nx, ny), dir=1, dtype="float64") |
| 130 | +D2op = pylops.SecondDerivative((nx, ny), dir=1, dtype="float64") |
131 | 131 | B = np.reshape(D2op * np.ndarray.flatten(A), (nx, ny)) |
132 | 132 |
|
133 | 133 | fig, axs = plt.subplots(1, 2, figsize=(10, 3)) |
|
0 commit comments