|
208 | 208 | p = Sop1.H * data.ravel() |
209 | 209 | preshape = p.reshape(nwins[0], nwins[1], nop1[0], nop1[1]) |
210 | 210 |
|
211 | | -ix = 16 |
| 211 | +it = 16 # index of window along time axis for plotting |
212 | 212 | fig, axs = plt.subplots(2, 4, figsize=(12, 5)) |
213 | 213 | fig.suptitle("Data patches") |
214 | | -for i in range(4): |
215 | | - axs[0][i].imshow(np.fft.fftshift(np.abs(preshape[i, ix]).T, axes=1)) |
| 214 | +for i, ix in enumerate(range(4)): |
| 215 | + axs[0][i].imshow(np.fft.fftshift(np.abs(preshape[ix, it]).T, axes=1)) |
216 | 216 | axs[0][i].axis("tight") |
217 | 217 | axs[1][i].imshow( |
218 | | - np.real((Fop.H * preshape[i, ix].ravel()).reshape(nwin)).T, |
| 218 | + np.real((Fop.H * preshape[ix, it].ravel()).reshape(nwin)).T, |
219 | 219 | cmap="gray", |
220 | 220 | vmin=-30, |
221 | 221 | vmax=30, |
|
228 | 228 | p_pseudo = Sop1.H * data_pseudo.ravel() |
229 | 229 | p_pseudoreshape = p_pseudo.reshape(nwins[0], nwins[1], nop1[0], nop1[1]) |
230 | 230 |
|
231 | | -ix = 16 |
232 | 231 | fig, axs = plt.subplots(2, 4, figsize=(12, 5)) |
233 | 232 | fig.suptitle("Pseudo-deblended patches") |
234 | | -for i in range(4): |
235 | | - axs[0][i].imshow(np.fft.fftshift(np.abs(p_pseudoreshape[i, ix]).T, axes=1)) |
| 233 | +for i, ix in enumerate(range(4)): |
| 234 | + axs[0][i].imshow(np.fft.fftshift(np.abs(p_pseudoreshape[ix, it]).T, axes=1)) |
236 | 235 | axs[0][i].axis("tight") |
237 | 236 | axs[1][i].imshow( |
238 | | - np.real((Fop.H * p_pseudoreshape[i, ix].ravel()).reshape(nwin)).T, |
| 237 | + np.real((Fop.H * p_pseudoreshape[ix, it].ravel()).reshape(nwin)).T, |
239 | 238 | cmap="gray", |
240 | 239 | vmin=-30, |
241 | 240 | vmax=30, |
|
248 | 247 | p_inv = Sop1.H * data_inv.ravel() |
249 | 248 | p_invreshape = p_inv.reshape(nwins[0], nwins[1], nop1[0], nop1[1]) |
250 | 249 |
|
251 | | -ix = 16 |
252 | 250 | fig, axs = plt.subplots(2, 4, figsize=(12, 5)) |
253 | 251 | fig.suptitle("Deblended patches") |
254 | | -for i in range(4): |
255 | | - axs[0][i].imshow(np.fft.fftshift(np.abs(p_invreshape[i, ix]).T, axes=1)) |
| 252 | +for i, ix in enumerate(range(4)): |
| 253 | + axs[0][i].imshow(np.fft.fftshift(np.abs(p_invreshape[ix, it]).T, axes=1)) |
256 | 254 | axs[0][i].axis("tight") |
257 | 255 | axs[1][i].imshow( |
258 | | - np.real((Fop.H * p_invreshape[i, ix].ravel()).reshape(nwin)).T, |
| 256 | + np.real((Fop.H * p_invreshape[ix, it].ravel()).reshape(nwin)).T, |
259 | 257 | cmap="gray", |
260 | 258 | vmin=-30, |
261 | 259 | vmax=30, |
|
0 commit comments